首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3490篇
  免费   412篇
  国内免费   13篇
工业技术   3915篇
  2024年   5篇
  2023年   54篇
  2022年   59篇
  2021年   166篇
  2020年   143篇
  2019年   137篇
  2018年   199篇
  2017年   197篇
  2016年   222篇
  2015年   153篇
  2014年   201篇
  2013年   280篇
  2012年   271篇
  2011年   294篇
  2010年   217篇
  2009年   203篇
  2008年   191篇
  2007年   146篇
  2006年   92篇
  2005年   94篇
  2004年   66篇
  2003年   60篇
  2002年   61篇
  2001年   47篇
  2000年   33篇
  1999年   28篇
  1998年   41篇
  1997年   32篇
  1996年   29篇
  1995年   19篇
  1994年   21篇
  1993年   11篇
  1992年   16篇
  1991年   18篇
  1990年   12篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1985年   9篇
  1984年   9篇
  1983年   6篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1977年   7篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1963年   2篇
排序方式: 共有3915条查询结果,搜索用时 31 毫秒
1.
Graphene-based materials have attracted significant attention in many technological fields, but scaling up graphene-based technologies still faces substantial challenges. High-throughput top-down methods generally require hazardous, toxic, and high-boiling-point solvents. Here, an efficient and inexpensive strategy is proposed to produce graphene dispersions by liquid-phase exfoliation (LPE) through a combination of shear-mixing (SM) and tip sonication (TS) techniques, yielding highly concentrated graphene inks compatible with spray coating. The quality of graphene flakes (e.g., lateral size and thickness) and their concentration in the dispersions are compared using different spectroscopic and microscopy techniques. Several approaches (individual SM and TS, and their combination) are tested in three solvents (N-methyl-2-pyrrolidone, dimethylformamide, and cyrene). Interestingly, the combination of SM and TS in cyrene yields high-quality graphene dispersions, overcoming the environmental issues linked to the other two solvents. Starting from the cyrene dispersion, a graphene-based ink is prepared to spray-coat flexible electrodes and assemble a touch screen prototype. The electrodes feature a low sheet resistance (290 Ω □−1) and high optical transmittance (78%), which provide the prototype with a high signal-to-noise ratio (14 dB) and multi-touch functionality (up to four simultaneous touches). These results illustrate a potential pathway toward the integration of LPE-graphene in commercial flexible electronics.  相似文献   
2.
Templated grain growth is beneficial for piezoelectric materials, the properties of which become the best in their single crystalline form. Nevertheless, a textured ceramic prepared by a templated grain growth technique often fails in exhibiting as good properties as expected in single crystals even with a high degree of orientation factor. Here, we propose a new strategy for maximizing texturing effect by suppressing the growth of untextured matrix grains. The textured ceramics made by our method, so-called bi-templated grain growth, are featured by ultrahigh piezoelectric properties (d33 = ~1,031 pC/N, d?g = ~59,000, kp = ~0.76). A special emphasis is on the achieved electric-field-induced strain of 0.13 % at 1 kV/mm, which is as high as that of single crystals. This work demonstrates that not only the degree of texture but also the coarsening of untextured matrix grains should be well-controlled to best exploit the templated grain growth technique.  相似文献   
3.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
4.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
5.
Spirobifluorene (SBF) is one of the most important scaffolds used in the design of organic semi-conductors (OSCs) for electronics. In recent years, among all the structures developed for these applications, SBF dimers have been highlighted due to their great potential in thermally activated delayed fluorescence and in phosphorescent organic light-emitting diodes. Attaching two SBF units generate 10 dimers, each possessing its own structural specificity, which in turn drives its electronic properties. These ten SBF dimers are gathered herein. Understanding how the molecular assembly determines the electronic properties has been one of the pillars of organic electronics. This is the goal of this article. As positional isomerism is a key tool to design OSCs, defining the design guidelines for the SBF scaffold appears of interest for the future of this building block. Herein, the importance of the two main parameters involved in the electrochemical and photophysical properties, namely the nature of the phenyl linkages and the steric congestion between the two SBF units is discussed. The combination of these two parameters drives the electronic properties but their respective weight is different as a function of the regioisomer involved or of the property considered (frontier orbitals energy level, absorption, fluorescence, phosphorescence).  相似文献   
6.
Obesity has become a pandemic that threatens the quality of life and discovering novel therapeutic agents that can reverse obesity and obesity-related metabolic disorders are necessary. Here, we aimed to identify new anti-obesity agents using a phenotype-based approach. We performed image-based high-content screening with a fluorogenic bioprobe (SF44), which visualizes cellular lipid droplets (LDs), to identify initial hit compounds. A structure-activity relationship study led us to yield a bioactive compound SB1501, which reduces cellular LDs in 3T3-L1 adipocytes without cytotoxicity. SB1501 induced the expression of gene products that regulate mitochondrial biogenesis and fatty acid oxidation in 3T3-L1 adipocytes. Daily treatment with SB1501 improved the metabolic states of db/db mice by reducing body fat mass, adipose tissue mass, food intake, and increasing glucose tolerance. The anti-obesity effect of SB1501 may result from perturbation of the PGC-1α–UCP1 regulatory axis in inguinal white adipose tissue and brown adipose tissue. These data suggest the therapeutic potential of SB1501 as an anti-obesity agent via modulating mitochondrial activities.  相似文献   
7.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
8.
Porous architectures are important in determining the performance of lithium–sulfur batteries (LSBs). Among them, multiscale porous architecutures are highly desired to tackle the limitations of single‐sized porous architectures, and to combine the advantages of different pore scales. Although a few carbonaceous materials with multiscale porosity are employed in LSBs, their nonpolar surface properties cause the severe dissolution of lithium polysulfides (LiPSs). In this context, multiscale porous structure design of noncarbonaceous materials is highly required, but has not been exploited in LSBs yet because of the absence of a facile method to control the multiscale porous inorganic materials. Here, a hierarchically porous titanium nitride (h‐TiN) is reported as a multifunctional sulfur host, integrating the advantages of multiscale porous architectures with intrinsic surface properties of TiN to achieve high‐rate and long‐life LSBs. The macropores accommodate the high amount of sulfur, facilitate the electrolyte penetration and transportation of Li+ ions, while the mesopores effectively prevent the LiPS dissolution. TiN strongly adsorbs LiPS, mitigates the shuttle effect, and promotes the redox kinetics. Therefore, h‐TiN/S shows a reversible capacity of 557 mA h g?1 even after 1000 cycles at 5 C rate with only 0.016% of capacity decay per cycle.  相似文献   
9.
Novel ionic liquids and organic salts based on mono- or dianionic zoledronate and protonated superbases, choline and n-alkylmethylimidazolium cations, were prepared and characterized by spectroscopic and thermal analyses. Most of the prepared salts display amorphous structures and very high solubility in water and saline solutions, especially the dianionic salts. Among the zoledronate-based ionic compounds, those containing choline [Ch] and methoxyethylmethylimidazolium [C3OMIM] cations appear to have significant cytotoxicity against human osteosarcoma cells (MG63) and low toxicity toward healthy skin fibroblast cells. Because osteosarcoma is a bone pathology characterized by an increase in bone turnover rate, the results presented herein may be a promising starting point for the development of new ionic pharmaceutical drugs against osteosarcoma.  相似文献   
10.
Quadruplex nucleic acids are promising targets for cancer therapy. In this study we used a fragment-based approach to create new flexible G-quadruplex (G4) DNA-interactive small molecules with good calculated oral drug-like properties, based on quinoline and triazole heterocycles. G4 melting temperature and polymerase chain reaction (PCR)-stop assays showed that two of these compounds are selective G4 ligands, as they were able to induce and stabilize G4s in a dose- and DNA sequence-dependent manner. Molecular docking studies have suggested plausible quadruplex binding to both the G-quartet and groove, with the quinoline module playing the major role. Compounds were screened for cytotoxicity against four cancer cell lines, where 4,4′-(4,4′-(1,3-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(1-methylquinolin-1-ium) ( 1 d ) showed the greater activity. Importantly, dose–response curves show that 1 d is cytotoxic in the human colon cancer HT-29 cell line enriched in cancer stem-like cells, a subpopulation of cells implicated in chemoresistance. Overall, this study identified a new small molecule as a promising lead for the development of drugs targeting G4 in cancer stem cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号