首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   1篇
工业技术   61篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   13篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2002年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1981年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
Journal of Materials Science - For transformers and inductors to meet the world’s growing demand for electrical power, more efficient soft magnetic materials with high saturation magnetic...  相似文献   
2.
The effects of solution treatment time and Si content and morphology on microstructures and mechanical properties of heat-treated Al-Si-Mg cast alloys were investigated systematically. Five alloys, with Si levels ranging from 1 to 13 pct, were tested in as-cast, T4, and T61 conditions. The eutectic Si was both unmodified and Sr-modified. Results show that the microstructures are affected significantly by alloy composition, eutectic Si morphology, and solution treatment time. Si content has significant effects on ultimate tensile strength (UTS), yield strength (YS), and elongation as well as a strong influence on solution treatment response. In T61 treatment with different solutionizing times, UTS and YS reach their maximum values in ~1 hour of solutionizing followed by a decrease, then a slight increase, and finally, a plateau close to the maximum level. Elongation of alloys with a high Si content, 7 pct and 13 pct, increases rapidly at solutionizing times of 1 to 2 hours then varies in a wide range, showing improvements in the 4 to 10 hours range. The data indicate that a solution treatment time of ~1 hour is sufficient to achieve maximum strength. The changes in mechanical properties were correlated to changes in microstructure evolution—Mg-Si precipitation, Si particle fragmentation, and microstructure homogenization. Empirical models uniquely relating Si content to UTS and YS are given for T61 heat-treated alloys.  相似文献   
3.
4.
The rheocasting solidification process has been applied in the production of IN-100 nickel base superalloy. A high vacuum furnace for rheocasting superalloys was used to rheocast ingots under different processing conditions. Processing variables which were evaluated include stirring speed, isothermal stirring time, and volume fraction solid during isothermal stirring. Ingots, furnace cooled at the same rate but without stirring, were also examined for comparison with the rheocast ingots. A detailed microstructural examination was made of the resultant microstructure both on furnace cooling after stirring and on reheating to the isothermal stirring temperature followed by water quenching. Rheocasting yielded fine-grained structures, where the extent of microsegregatiori, the variation in macrostructure, and the solidification-induced porosity were found to be reduced in comparison to the unstirred ingot. The grain size and nonuniformity in the as-cast ingot were reduced by increasing the stirring speed, isothermal stirring time, or the volume fraction solid during stirring. The degree of the microsegregation decreased significantly with increasing volume fraction solid. Grain boundaries, both with and without solute enrichment, were found in the rosette-like solid particles after rheocasting, lending support to the Vogel-Cantor-Doherty model of rheocasting based on the formation of grain boundaries by strain-induced recrystallization and by sintering. It is clear from these results that the microstructure of this superalloy was significantly improved by rheocasting. Improved mechanical properties were also found and will be reported separately.  相似文献   
5.
6.
Near-net shape manufacturing (NNSM) of thin steel sections by spray casting eliminates casting as a separate step with attendant improved microstructures and properties and significant energy savings. The process involves atomization of a stream of liquid metal and deposition of droplets in the generated spray on a moving substrate at mass flow rates of 0.25 to 2.5 kg/s. In this paper, NNSM of steel strip by the Osprey spray casting process is investigated by combining numerical simulation and experiments. Critical input parameters for the computation are quantified utilizing existing state-of-the-art mathematical models and specific experiments. Numerical computation of the consolidation of the spray at the substrate during manufacture of thin sections is conducted using bothcontinuum anddiscrete event (“splat solidification”) approaches to predict: (1) variation of strip thickness in the transverse dimension and (2) isotherms and cooling rates across the strip thickness. Predicted geometries of the strip simulated by the continuum model are in good agreement with measurements. Predicted isotherms in narrow strip by the continuum approach are in reasonable agreement with thermocouple measurements for intermediate thicknesses (2 to 5 mm), and the observed microstructure is consistent with predicted cooling rates. The discrete event model predicts significantly higher cooling rates than the continuum model in the basal portion of the strip. This is consistent with the observed grain size in thin strip (<l-mm thick) and in the basal portion of thick strip. Beyond a threshold thickness, however, the discrete event model confirms the formation and persistence of a partially liquid layer at the growing surface of the deposit with an attendant decrease in the cooling rate. The influence of critical parameters on “splat solidification” is analyzed and assessed. DIRAN APELIAN, formerly Howmet Professor of Materials Engineering at Drexel University  相似文献   
7.
This work provides a comprehensive understanding of the reactions at the ferrous die/molten metal interface in a metal mold casting operation. The literature has shown that several important factors influence reactions at the ferrous die/molten aluminum interface, including temperature of the melt, temperature of the die, alloy chemistry of the melt and die, die surface engineering, topographical features, and coatings. This article discusses the effect of the more critical factors on soldering, based on the authors’ investigations. Inaddition, based on a mechanistic understanding of the interface reactions between ferrous die and molten aluminum, recommendations are given for specific processing issues to alleviate soldering during die casting of aluminum alloys.  相似文献   
8.
Ongoing research at Worcester Polytechnic Institute (WPI) has recently resulted in the development of an electrostatic multipin instrument capable of testing green-state compacts directly after compaction. By monitoring a steady electric current flow through the sample and recording the voltages over the surface valuable information is gathered, leading to the prediction of the structural health of the green-state parts. Whereas our prior work concentrated on the detection of surface-breaking and subsurface defects, which requires the determination of large differences in material properties over small flaw sizes, the results presented in this paper aim at the density prediction throughout the volume of the sample. This requires the detection of small changes in material properties over large regions. A physical model and a mathematical formulation are reported, which are capable of relating green-state density changes to electric conductivity in the presence of various lubricant concentrations. Preliminary electrostatic measurements of cylindrical compacts have thus far confirmed the theoretical model assumptions, showing that the electric conductivity follows a complex graphical behavior that is determined by the type and concentration of the lubricant. Specifically, the green state conductivity increases as the sample density increases up to values of approximately 6.9 to 7.0 g/cm3. Any further density increase, however, results in a decrease in conductivity.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号