首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
工业技术   7篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 2 毫秒
1
1.
为了消除环境因素(尤其是振动和温度波动)在物体表面三维形貌测量中的影响,基于正弦相位调制(SPM)发展了一种光纤干涉条纹相位稳定技术。利用马赫-泽德光纤干涉仪结构和杨氏双孔干涉原理实现高密度的余弦分布干涉条纹投射。利用两光纤干涉臂端面的菲涅尔反射生成迈克尔逊干涉信号,由光电探测器(PD)检测后送入相位控制系统。采用相位生成载波的方法提取干涉信号的相位,并将生成的补偿信号闭环反馈给压电陶瓷驱动器,与正弦相位调制信号相加后共同驱动压电陶瓷,补偿环境因素带来的相位漂移,实现干涉条纹相位的稳定。环境因素对条纹相位的影响低于57 mrad,实验结果验证了该方法可行性。  相似文献   
2.
基于条纹投射和正弦相位调制技术,提出了一种用于测量物体表面三维形貌信息的光纤干涉系统。通过杨氏双孔结构实现了条纹投射,并以余弦电压信号驱动压电陶瓷实现正弦相位调制。为了消除机械振动、温度波动等外部干扰,采用相位控制系统对相位漂移进行检测,并生成实时相位补偿信号。补偿后相位误差可达6.8 mrad,从而获得高精度的干涉条纹相位稳定度。对待测件的表面轮廓连续测量两次,时间间隔为10 min,测量重复度达到0.05波长。实验结果证明:该系统能够实现较高精度的表面形貌测量。  相似文献   
3.
基于交流相位跟踪零差补偿技术,采用CORDIC算法检测光相位变化,并在FPGA中设计了CORDIC算法实现的流水线结构,实现了对光相位变化的实时检测。同时,通过查找表和抛物线插值校正算法解决了CORDIC算法在运算中存在的"死区"问题,实现了光相位变化的高精度检测。实验表明,光相位的误差精度达到10-4。此方法具有实时性强和精度高的优点,适合大量数据的高速处理。  相似文献   
4.
基于CORDIC的交流相位跟踪零差补偿方法及其实现   总被引:1,自引:0,他引:1  
为了消除温度、振动等环境因素在光纤干涉测量中的影响,发展了一种基于交流相位跟踪零差补偿(PTAC)的干涉条纹相位稳定技术。利用马赫-泽德光纤干涉仪结构和杨氏双孔干涉原理实现高密度的余弦分布干涉条纹投射。光纤端面菲涅尔反射与光纤耦合器构成迈克尔逊干涉结构,光电探测器检测迈克尔逊干涉仪的输出信号。相位稳定子系统采用相位生成载波(PGC)方法提取环境因素引起的光纤干涉臂相位差,结合坐标旋转数字式计算机(CORDIC)求解相位差,并生成补偿信号反馈给压电陶瓷(PZT)驱动器,实现条纹相位的稳定。该系统相位解调精度达2.75 mrad,环境因素对干涉条纹相位的影响低于53.43 mrad。实验结果验证了该相位稳定方法的可行性。  相似文献   
5.
在基于条纹投射的物体表面形貌测量中,温度漂移和振动是造成条纹相位漂移的主要因素。为了稳定条纹相位,在相位补偿系统(PCS)中运用峰值检测简化相位提取过程,发展了一种基于正弦相位调制的干涉条纹相位稳定技术。将光纤缠绕在柱形压电陶瓷(PZT)上,向PZT注入正弦驱动电压实现对干涉条纹相位的正弦相位调制。运用2×2光纤耦合器分光,结合马赫-泽德干涉与杨氏干涉结构实现条纹投射。光电探测器检测两端面反射信号形成的迈克尔逊干涉信号,从中提取环境因素引起的相位漂移,运用旋转坐标数字机进行快速反正弦计算,生成的补偿信号与调制信号叠加后共同驱动PZT,实现条纹相位稳定。实验结果表明,条纹相位稳定精度为5.5 mrad,较好地消除环境因素引起的相位漂移。  相似文献   
6.
针对目前常用的钢板表面检测系统在检测三维缺陷时存在的局限性,提出了一种基于数字条纹投影的三维缺陷检测方法,并构建了检测系统的数学模型,首先通过面阵CCD相机采集由表面三维缺陷引起的投射条纹形变图像,然后使用旋滤波算法对条纹图像预处理,并通过傅里叶变换轮廓术算法实现对条纹相位的提取,最终利用数学模型推导出条纹相位与缺陷深度的关系,进行钢板表面三维缺陷的在线检测.试验结果表明,该方法在准确检出钢板表面三维缺陷(凹坑或凸包)的同时较好地解决了钢板在传送中的振动及二维缺陷干扰等问题.  相似文献   
7.
随着信息时代光谱分析技术的飞速发展,光谱仪器的高精度、低干扰、体积小型化等性能优势使其成为各领域各行业的优选信息获取手段。本文以光学设计的基本原理为指导、中阶梯光栅为核心、宽波长范围和高分辨力为设计目标,设计了一种基于切尼尔-特纳型光路结构的小型中阶梯光栅光谱仪系统。通过理论分析和计算,确定了系统的结构参数,并使用Zemax软件进行光学仿真。结果表明,该系统在200~800 nm的波段上理论分辨力优于0.1 nm。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号