首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22372篇
  免费   2702篇
  国内免费   1303篇
工业技术   26377篇
  2024年   69篇
  2023年   381篇
  2022年   722篇
  2021年   1046篇
  2020年   752篇
  2019年   726篇
  2018年   675篇
  2017年   748篇
  2016年   722篇
  2015年   924篇
  2014年   1217篇
  2013年   1353篇
  2012年   1496篇
  2011年   1675篇
  2010年   1543篇
  2009年   1439篇
  2008年   1349篇
  2007年   1278篇
  2006年   1299篇
  2005年   975篇
  2004年   818篇
  2003年   829篇
  2002年   966篇
  2001年   767篇
  2000年   549篇
  1999年   479篇
  1998年   305篇
  1997年   245篇
  1996年   194篇
  1995年   149篇
  1994年   140篇
  1993年   108篇
  1992年   87篇
  1991年   76篇
  1990年   72篇
  1989年   48篇
  1988年   47篇
  1987年   15篇
  1986年   19篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1980年   6篇
  1979年   8篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1959年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
2.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
3.
Zirconolite-rich full ceramic wasteforms designed to immobilize Pu-bearing wastes were produced via hot isostatic pressing (HIP) using stainless steel (SS) and nickel (Ni) HIP canisters. A detailed profiling of the elemental compositions of the major and minor phases over the canister–wasteform interaction zone was performed using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS) characterization. Bulk sample analyses from regions near the center of the HIP canister were also conducted for both samples using X-ray diffraction and SEM-EDS. The sample with the Ni HIP canister showed almost no interaction zone with only minor diffusion of Ni from the inner wall of the canister into the near-surface region of the wasteform. The sample with the SS HIP canister showed ∼100–120 μm of interaction zone dominated by high-temperature Cr diffusion from canister materials to the wasteform with the Cr predominantly incorporated into the durable zirconolite phase. We also examined, for the first time, changes to the HIP canister wall thickness caused by HIPing and demonstrated that no canister wall thinning occurred. Instead, in the areas examined, the canister wall thickness was observed to increase (up to ∼20%) due to the compression occurring during the HIP cycle. Further, only sparse formation of (Cr, Mn)-rich oxide particles were noted within the HIP canister inner wall area immediately adjacent to the ceramic material, with no evidence for reverse diffusion of ceramic materials. Though the HIP canister–wasteform interaction extends to ∼120 μm when using an SS HIP canister for the system investigated, this translates to <<1 vol.% for an industrial scale HIPed wasteform. Importantly, the HIP canister–wasteform interactions did not produce any obviously less durable phases in the wasteform or had any detrimental impact on the HIP canister properties.  相似文献   
4.
Feng  Yingrui  Hu  Kang  Zhang  Min  Ding  Wei  Kong  Xiangkai  Sheng  Zhigao  Liu  Qiangchun 《Journal of Materials Science》2022,57(1):204-216
Journal of Materials Science - Rationally designing microwave absorption materials with highly efficient and tunable bandwidth is in great demand but remains a huge challenge. In this study,...  相似文献   
5.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
6.
Yue  Sheng  Li  Xiaolei  Yu  Huijun  Tong  Zongwei  Liu  Zhengdao 《Journal of Porous Materials》2021,28(3):651-659
Journal of Porous Materials - High-strength silica aerogels were prepared successfully by a new two-step surface modification (TSSM) method via ambient pressure drying (APD). Methyltrimethoxysilane...  相似文献   
7.
目的:研究抗成纤维细胞生长因子(FGF-2)纳米抗体对碱烧伤诱导的大鼠角膜血管生成的治疗作用。方法:将SD大鼠分为:假手术组(Sham),模型组(Model,直径为3 mm的浸有1 mol/L NaOH溶液圆形滤纸贴于大鼠眼角膜中央处30 s,制备大鼠碱烧伤血管生成模型)和治疗组(Treatment,术后7天至21天用3 mg/mL的抗FGF-2纳米抗体溶液滴眼,每日3次,每次10 μL,共14天)。通过体视显微镜和CD31免疫组织化学染色计算大鼠角膜血管生成情况。实时荧光定量PCR、酶联免疫吸附测定和免疫组织化学染色3种方法检测抗血管内皮生长因子(VEGF)和FGF-2的mRNA和蛋白表达水平。结果:(1)血管:治疗组较模型组的面积显著减少,血管管腔较窄(P<0.05),在药物干预14天后,差异最为显著;(2)FGF-2的mRNA和蛋白表达水平:模型组与治疗组的结果相近(P>0.05);(3)VEGF的mRNA和蛋白表达水平:治疗组显著高于模型组(P<0.05)。此外,假手术组的持续给药也使得VEGF表达显著增加(P<0.05)。 结论:抗FGF-2纳米抗体可抑制由碱烧伤诱导的角膜血管新生,但也使得正常大鼠角膜或病理大鼠角膜的VEGF表达水平代偿性升高。  相似文献   
8.
Tumor-specific enhanced delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs), respectively, represents safer and more effective therapy for pancreatic cancer. Herein, a membrane type 1-matrix metalloproteinase (MT1-MMP)-cleavable spacer is used to assemble low-density cRGDfK onto thermosensitive liposomes loaded with phosphorylated calcipotriol (PCAL) and doxorubicin (DOX), yielding MR-T-PD. The liposome-linked cRGDfK prodrug on MR-T-PD surface is first activated by MT1-MMP, which is selectively expressed on tumor endothelial cells, to release cRGDfK. The free cRGDfK specifically promotes tumor angiogenesis, leading to 3.4-fold higher accumulation and a wider distribution of MR-T-PD in tumors. Furthermore, MR-T-PD rapidly releases PCAL and DOX into the interstitium under heat treatment. The released DOX enters tumor cells to induce apoptosis, whereas the PCAL prodrug is converted to CAL by alkaline phosphatase on the surface of aPSCs; CAL can then enter aPSCs to induce quiescence and promote the antitumor effect of DOX. Finally, by enhancing the exposure of DOX and CAL to tumor cells and aPSCs, respectively, in a tumor-specific manner, MR-T-PD exerts superior efficacy (a 5.9-fold decrease in tumor weight) without causing additional side effects. Overall, this prodrug-based smart liposome system represents a promising paradigm for pancreatic cancer therapy.  相似文献   
9.
Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising solution for the conversion and storage of solar energy. Because sluggish water oxidation is the bottleneck of water splitting, the design and preparation of an efficient photoanode is intensively investigated. Currently, all known photoanode materials suffer from at least one of the following drawbacks: ① low carriers separation efficiency; ② sluggish surface water oxidation reaction; ③ poor long-term stability; ④ insufficient water adsorption and gas desorption. Core–shell configurations can endow a photoanode with improved activity and stability by coating an overlayer that plays energetic, catalytic, and/or protective roles. The construction strategy has an important effect on the activity of a core–shell photoanode. Nonetheless, the mechanism for the improvement of performance is still ambiguous and is worthy of a closer examination. In this review, the successes and challenges of core–shell photoanodes for water oxidation, focusing on synthesis strategies as well as functionalities (facilitating carrier separation, surface reaction promotion, corrosion prevention, and bubble detachment) are explored. Finally, the perspectives of this class of materials in terms of new opportunities and efforts are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号