首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121808篇
  免费   9046篇
  国内免费   4880篇
工业技术   135734篇
  2024年   198篇
  2023年   1432篇
  2022年   2470篇
  2021年   3373篇
  2020年   2550篇
  2019年   2083篇
  2018年   2783篇
  2017年   3170篇
  2016年   3342篇
  2015年   4259篇
  2014年   4699篇
  2013年   5467篇
  2012年   8205篇
  2011年   8966篇
  2010年   6597篇
  2009年   6418篇
  2008年   6316篇
  2007年   5876篇
  2006年   5362篇
  2005年   7227篇
  2004年   5321篇
  2003年   4406篇
  2002年   3066篇
  2001年   2627篇
  2000年   1746篇
  1999年   1808篇
  1998年   7010篇
  1997年   4571篇
  1996年   3139篇
  1995年   2024篇
  1994年   1472篇
  1993年   1420篇
  1992年   479篇
  1991年   481篇
  1990年   472篇
  1989年   414篇
  1988年   379篇
  1987年   265篇
  1986年   239篇
  1985年   192篇
  1984年   87篇
  1983年   90篇
  1982年   144篇
  1981年   188篇
  1980年   218篇
  1979年   65篇
  1978年   98篇
  1977年   610篇
  1976年   1325篇
  1975年   100篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
周慧 《机械管理开发》2021,36(8):131-132
盘形制动器属于提升系统内的一重要部件,为确保提升机盘形制动器的稳定可靠运行,基于同家梁矿矿井提升机盘形制动器应用现状,分析了现存的主要问题,提出了采用智能监测盘形制动器来替代原盘形制动器的策略.通过在该新型盘形制动器内装设内置制动正压力传感器,解决了老旧盘形制动器无法准确测量内部碟簧力的问题,取得了较好的应用效果.  相似文献   
2.
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.  相似文献   
3.
In order to enhance the photocatalytic activity of TiO2 under visible light, Ag nanoparticles were introduced into tridoped B–C–N–TiO2 (TT) catalyst by photoreduction deposition. Ag/B–C–N–TiO2 (ATT) catalysts with the functions of reducing band gap and carrier recombination were prepared. At the same time, the effect of the amount of Ag on the photocatalytic performance of ATT catalyst was investigated. Through XRD, XPS, PL and other characterization methods, the (211)/(101)/Ag interface heterojunction mechanism similar to the traditional Z-scheme heterojunction was proposed. The intervention of Ag nanoparticles changed the P–N interface heterojunction between (211)/(101) to the (211)/(101)/Ag Z-scheme interface heterojunction. The results show that ATT catalyst exhibits the highest photocatalytic activity when the molar amount of Ag is 0.005% with the MB degradation rate of the ATT catalyst (0.01707 min?1), which is 14.59 times of TiO2 (0.00117 min?1) and 2.02 times of TT (0.00847 min?1). In addition, the four cycles efficiencies of ATT for MB degradation were all above 94.00%.This study reveals the possibility of construction of Z-scheme heterojunctions between precious metal nanoparticles and different interfaces of TiO2, and provides a reference for the construction of Z-scheme interface heterojunctions.  相似文献   
4.
马慧  汤庸  何怀文 《电子学报》2021,49(11):2273-2278
在公交时间表下给定起始和目标站点,路径规划查询返回一组到达时间早和换乘次数少的帕雷托最优路径.现有的索引方法需要大量运行时内存.本文提出主存空间高效的索引方法(a-)PAINT.(a-)PAINT对每个站点v预计算一组标签,使得对于从站点s到站点d的查询可以通过匹配s和d相关的标签高效地生成查询结果的一条路径.PAINT对任意查询返回最优路径.a-PAINT只需要很小的预处理开销,但可能返回多一趟换乘的次优路径.用真实的公交时间表与模拟查询测试,PAINT具有合理的预处理开销.a-PAINT需要更少量的预处理开销,在大规模公交网络下准确率达90%.  相似文献   
5.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
6.
A series of tetrathiophene-based fully non-fused ring acceptors (4T-1, 4T-2, 4T-3, and 4T-4), which can be paired with the star donor polymer PBDB-T to fabricate highly efficient organic solar cells are developed. Tailoring the size of lateral chains can tune the solubility and packing mode of acceptor molecules in neat and blend films. It is found that the incorporation of 2-ethylhexyl chains can effectively change the compatibility with the donor polymer PBDB-T, and an encouraging power conversion efficiency of 10.15% is accomplished by 4T-3-based organic solar cells. It also presents good compatibility with the other polymer donor and an even higher power conversion efficiency (PCE) of 12.04% is achieved based on D18:4T-3 blend, which is the champion PCE for the fully non-fused acceptors. Importantly, these inexpensive tetrathiophene fully non-fused ring acceptors provide cost-effective photovoltaic performance. The results demonstrate a high photovoltaic performance from synthetically inexpensive materials could be achieved by the rational design of non-fused ring acceptor molecules.  相似文献   
7.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
8.
Designing a semiconductor-based heterostructure photocatalyst for achieving the efficient separation of photogenerated electron-hole pairs is highly important for enhancing H2 releasing photocatalysis. Here, a new class of Ni1−xCoxSe2–C/ZnIn2S4 hierarchical nanocages with abundant and compact ZnIn2S4 nanosheets/Ni1−xCoxSe2C nanosheets 2D/2D hetero–interfaces, is designed and synthesized. The constructed heterostructure photocatalyst exposes rich hetero-junctions, supplying the broad and short transfer paths for charge carriers. The close contacts of these two kinds of nanosheets induce a strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C, improving the separation and transfer of photo-generated electron-hole pairs. As a consequence, the distinctive Ni1−xCoxSe2 C/ZnIn2S4 hierarchical nanocages without using additional noble-metal cocatalysts, display remarkable H2-relaesing photocatalytic activity with a rate of 5.10 mmol g−1 h−1 under visible light irradiation, which is 6.2 and 30 times higher than those of fresh ZnIn2S4 nanosheets and bare Ni1−xCoxSe2 C nanocages, respectively. Spectroscopic characterizations and theory calculations reveal that the strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C 2D/2D hetero-interfaces can powerfully promote the separation of photo-generated charge carriers and the electrons transfer from ZnIn2S4 to Ni1−xCoxSe2 C.  相似文献   
9.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
10.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号