首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   13篇
工业技术   286篇
  2024年   1篇
  2023年   1篇
  2021年   9篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   7篇
  2016年   5篇
  2015年   8篇
  2014年   12篇
  2013年   17篇
  2012年   17篇
  2011年   17篇
  2010年   13篇
  2009年   16篇
  2008年   17篇
  2007年   9篇
  2006年   12篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   10篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1955年   1篇
排序方式: 共有286条查询结果,搜索用时 203 毫秒
1.
Estimation of the cooling efficiency of an accelerated air for the needs of cooling of die forgings is presented. Temperature dependence of heat transfer coefficient (HTC) was calculated for different cooling conditions varied by airflow velocity, covering the range from 18 to 48?m/s. Time–temperature measurements performed on a full-scale semi-industrial cooling line provided similarity to conditions typical of industrial conveyor, which gives the results utilitarian significance in design of controlled processing (of steel forged products). Acquired HTC values, ranging from 164.7 to 298?W/m2?·?K, were validated in numerical simulation of cooling complex-shape forgings and subject to experimental verification, indicating perfect agreement with physical measurements.  相似文献   
2.
3.
The aim of study is the elaboration of semi‐biodegradable, multilayered tubular structures as substitutes for the reconstruction of small diameter vascular prostheses (<6 mm). The inert external layer of the prostheses will be fabricated via the melt electrospinning of poly (l ‐lactide‐co‐glycolide) (PLGA). The middle layer will be constructed from polypropylene (PP); the first prototype will be produced via melt electrospinning and the second using the melt blowing technique. The general aim of this stage of the research is the selection of a sterilisation technique that is appropriate for semi‐biodegradable, multilayered tubular structures. For this purpose, single tubular structures created via the melt electrospinning of PLGA or PP and melt blown tubular structures of PP were elaborated. The influence of steam, ethylene‐oxide (EO), and radiation sterilisation techniques on the elaborated microstructure of tubular structures was analyzed during this study. The effect of each sterilisation technique was evaluated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy analysis (SEM/EDS). The changes in average molecular weight (Mw) and crystallinity index (CI) of the PLGA tubular structures after EO and steam sterilisation were evaluated. The EO and steam sterilisation resulted in the complete destruction of PLGA tubular structures. Only the radiation sterilisation (accelerated electrons) did not influence on PLGA tubular structures morphology as well as thermal and chemical properties. FTIR and SEM/EDS analysis indicated that no changes in the chemical properties of PP tubular structures after each sterilisation occurred. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40812.  相似文献   
4.
The aim of research was to elaborate the non‐biodegradable (made of polypropylene (PP)) and resorbable (made of polylactide (PLA)) tubular fibrous structures for the reconstruction of the vascular vessels. For the mentioned structures design, nonconventional manufacturing techniques such as melt blown, melt electrospinning, and melt electroblowing were used. Three techniques were chosen as methods allowing on the fibrous structures manufacture containing fibers in nano‐ or submicro‐size diameter. Other advantages of free‐solvent technique use is the reduction in the clinical adverse events associated with solvent resided in the fibrous structure during the fabrication. The tubular fibrous structures of PP and PLA using above‐mentioned techniques were designed. In first stage, the analysis of the processing parameters influence on the nonbiodegradable and biodegradable tubular structures fiber diameter was performed. Subsequently, the validation step was the analysis of the influence of processing parameters on PP and PLA structural properties for each manufacturing techniques was investigated. The research results confirmed the ability of the tubular structures manufacture with various fiber diameter depending on the applied technique and processing parameters. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40147.  相似文献   
5.
Excessive UV exposure contributes to several pathological conditions like skin burns, erythema, premature skin aging, photodermatoses, immunosuppression, and skin carcinogenesis. Effective protection from UV radiation may be achieved with the use of sunscreens containing UV filters. Currently used UV filters are characterized by some limitations including systemic absorption, endocrine disruption, skin allergy induction, and cytotoxicity. In the research centers all over the world new molecules are developed to improve the safety, photostability, solubility, and absorption profile of new derivatives. In our study, we designed and synthesized seventeen novel molecules by combining in the structures two chromophores: xanthone and (E)-cinnamoyl moiety. The ultraviolet spectroscopic properties of the tested compounds were confirmed in chloroform solutions. They acted as UVB or UVA/UVB absorbers. The most promising compound 9 (6-methoxy-9-oxo-9H-xanthen-2-yl)methyl (E)-3-(2,4-dimethoxyphenyl)acrylate) absorbed UV radiation in the range 290–369 nm. Its photoprotective activity and functional photostability were further evaluated after wet milling and incorporation in the cream base. This tested formulation with compound 9 possessed very beneficial UV protection parameters (SPFin vitro of 19.69 ± 0.46 and UVA PF of 12.64 ± 0.32) which were similar as broad-spectrum UV filter tris-biphenyl triazine. Additionally, compound 9 was characterized by high values of critical wavelength (381 nm) and UVA/UVB ratio (0.830) thus it was a good candidate for broad-spectrum UV filter and it might protect skin against UVA-induced photoaging. Compound 9 were also shown to be photostable, non-cytotoxic at concentrations up to 50 µM when tested on five cell lines, and non-mutagenic in Ames test. It also possessed no estrogenic activity, according to the results of MCF-7 breast cancer model. Additionally, its favorable lipophilicity (miLogP = 5.62) does not predispose it to penetrate across the skin after topical application.  相似文献   
6.
Multidimensional Systems and Signal Processing - The paper is a comprehensive study on classification of motion capture data on the basis of dynamic time warping (DTW) transform. It presents both...  相似文献   
7.
New copolymer materials have been prepared by chemical grafting of oligomeric 3‐hydroxybutyric acid (OHB) onto polypyrrole (PPy) derivatives. The influence of grafting density and molecular weight of OHB brushes on the physicochemical properties of prepared copolymers was investigated. PPy substrates were prepared by FeCl3‐driven oxidative homopolymerization of N‐(2‐carboxyethyl)pyrrole or its copolymerization with pyrrole. The grafting method employed involved controlled anionic polymerization of β‐butyrolactone on pyrrole‐tethered potassium carboxylate active sites. Obtained PPy‐g‐OHB copolymers of varying grafting density and pendant polyester chain length were characterized and the observed structure–property relationships discussed. The impact of real time exposure to phosphate‐buffered saline environment was investigated and the residue products were characterized. Cross‐correlation of spectroscopic, thermal, electrical and elemental analysis data afforded comprehensive evaluation of the structure of prepared materials and their behaviour in hydrolytic medium. Erosion and degradation pathways have been identified, indicating ways to consciously tailor the physicochemical properties of these new biomimetic materials. © 2016 Society of Chemical Industry  相似文献   
8.
9.
Ethylzinc(II ) ethoxide is a highly active and efficient initiator for the bulk polymerization of 1,3‐trimethylene carbonate and its copolymerization with ? ‐caprolactone. This initiator allows one to obtain (co)polymers with high molar masses in quite a short time. Significant difference in co‐monomer reactivity and relatively low participation of intermolecular transesterification processes lead to the obtained copolymers being characterized by a gradient chain microstructure. In 13C NMR spectra, in all regions, we observed the presence of triads which were distinctly represented by four peaks for the carbonyl signal. Mechanical tests showed that copolymers containing 70% and more of ? ‐caprolactone presented a relatively high Young's modulus and a very high maximum elongation factor; therefore these materials are promising in many biomedical applications. Due to the high reaction rate, we also made an attempt at copolymerization using reactive extrusion which gave promising results. © 2017 Society of Chemical Industry  相似文献   
10.
This paper presents the results of an investigation of the influence of hydrodynamic instabilities on heat transfer intensity during the condensation of R134a and R404A refrigerants in pipe mini-channels. The heat transfer coefficient h is a measure of the effectiveness of the condensation process. It is particularly important to determine the value of the coefficient in the two-phase condensation area in a compact condenser. In other condenser areas (i.e., precooling of superheated vapor and subcooling of condensate), the heat efficiency is substantially smaller. Hydrodynamic instabilities of a periodic nature have an influence on size changes in these areas. A decrease in the heat transfer coefficient h in the two-phase area results in decreased intensity of the heat removal process in the whole condenser.The experimental investigations were based on the condensation of R134a and R404A refrigerants in horizontal pipe mini-channels with internal diameters of d = 0.64; 0.90; 1.40; 1.44; 1.92; 2.30 and 3.30 mm. Disturbances of the condensation process were induced with a periodic stop and a repetition of the flow of the refrigerant.In the range of frequencies, f = 0.25–5 Hz, of the periodically generated disturbances, an unfavorable influence on the intensity of the heat transfer during the condensation process in pipe mini-channels was identified. The reduction in the intensity of the heat transfer during the condensation process, which was induced with hydrodynamic instabilities, was presented in the form of the dependence of the heat transfer coefficient h on the vapor quality x and the frequencies f of the disturbances.The influence of the refrigerant, the diameter of the mini-channels and the frequency f on the damping phenomenon of the periodical disturbances in the pipe mini-channels was identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号