首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   10篇
工业技术   14篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2008年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
采用铸膜法制备了一种羧甲基壳聚糖/氧化羧甲基纤维素/姜黄素(CMCHS/ OCMC/ CR)三元复合材料。红外光谱和扫描电子显微镜分析显示,复合膜断面结构均匀,无分层,但表面粗糙度有所增大。与不添加姜黄素相比,复合材料具有更好的断裂应力(20.10 MPa),断裂伸长率(18.97%),抗真菌性能(黑曲霉抑菌圈15.33 mm,青霉抑菌圈14.58 mm)和透水性(2.11×10-3 g·m-1·kPa-1·h-1)。草莓保鲜实验结果表明,CMCHS/OCMC/CR复合材料涂膜可减缓贮藏过程中的失重率和可滴定酸、可溶性固形物、还原糖含量的下降。经贮藏8 d,草莓失重率比较空白对照减少了11.38%,较阳性对照减少了1.27%,硬度,可滴定酸、可溶性固形物、还原糖含量的下降分别较空白对照减少了10.00%、42.72%、7.39%、9.32%,较阳性对照分别减少了5.54%、7.42%、2.39%、11.12%。因此CMCHS/OCMC/CR(1%, m/m)复合膜显示出良好护色和抑制霉菌生长的保鲜作用,可作为良好的涂膜抗菌材料应用于食品包装材料中。  相似文献   
2.
浒苔多糖作为浒苔的主要功能成分,具有多种生物活性,如免疫调节、抗氧化、抗肿瘤、降血脂等。但是由于其分子量较大,浒苔多糖具有溶解性差、生物利用率低等缺陷,这极大地限制了浒苔多糖资源的高值化开发和利用。浒苔多糖降解后得到的低分子量产物,在保持了多糖的多种生物活性的基础上,大大提升了其溶解性、生物利用度等,因而浒苔多糖降解产物的制备与活性研究已成为海洋生物资源开发研究领域的热点。目前,浒苔寡糖的制备主要是通过对浒苔多糖的降解实现的,主要方法包括化学降解法、物理降解法和酶降解法等。该研究综述了浒苔多糖的化学组成、结构、提取和纯化方法,并对浒苔多糖降解产物的制备方法和活性等进展进行了总结和展望,以期为浒苔多糖及其降解产物的研究提供理论基础,为推动海洋藻类多糖资源的高值化利用和开发提供参考。  相似文献   
3.
应用型创新能力的培养教育是面向未来对人才的要求,以满足国家经济快速发展的需要而提出的一种具有前瞻性的教育理念,是以如何开发大学生的应用型创新潜能为宗旨的教育工程。为培养食品科学与工程专业学生应用型创新能力,我院通过完善师资队伍配置,借鉴传统师徒传承关系,增加认识实习环节比重,改革教学方法等多途径培养学生的应用型创新能力。  相似文献   
4.
褐藻胶作为一种线性多糖根据其结构和组成差异具有不同的生理生化特性,在食品、医药和化妆品等领域有着巨大的应用价值和潜力。褐藻胶的这些特性主要通过褐藻胶修饰酶如褐藻胶裂解酶、甘露聚糖C5差向异构酶、褐藻胶乙酰化酶和褐藻胶脱乙酰化酶的作用控制。作者主要概述了褐藻胶修饰酶合成和修饰褐藻胶的作用机理,总结了几种褐藻胶修饰酶的来源、分类、结构、作用方式和研究进程,重点阐述了褐藻胶裂解酶和甘露聚糖C5差向异构酶的相关研究进展,并对相关研究的未来发展提出展望,可为进一步开发和应用褐藻胶及其相关修饰酶提供借鉴和参考。  相似文献   
5.
石莼多糖是石莼属海洋绿藻细胞壁的主要成分,其复杂的结构和单糖组成赋予了各种生物活性,如抗病毒、抗炎症、抗凝血、抗氧化等。但是提取得到的石莼多糖的分子量较大,存在溶解度低,生物利用率差等缺点,这很大程度地限制了石莼多糖的高值化开发与有效利用。通过降解石莼多糖得到的低分子量的寡糖产物,即石莼寡糖,不仅能够非常好地保留石莼多糖的多种生物活性,还能够有效地解决溶解度低、生物利用率差等问题。因此,石莼寡糖的制备与活性研究成为海洋生物资源开发研究领域的热点。目前,石莼寡糖主要是通过化学法,物理法和酶法三种降解方式制备得到的。该研究对石莼多糖的化学组成、结构、提取、纯化和降解制备寡糖的方法进行了综述,并对石莼寡糖的生物活性研究进展进行了总结与展望,为石莼多糖及其寡糖的研究提供理论基础并以期为海洋藻类资源的高值化开发与有效利用提供参考。  相似文献   
6.
朱本伟  姚忠  仲兆祥  孙芸  周明柱  姜帅 《化工进展》2021,40(11):5875-5882
精油及其挥发性组分在化妆品、食品和药品工业、农业及食品保鲜等领域有着广泛的应用潜力。目前挥发性精油的分离主要采用的是分段蒸馏技术,该技术存在成本高、能耗大且容易造成精油组分破坏等缺陷,因此其应用受到了极大的限制。渗透汽化(pervaporation,PV)是一种用于液体混合物分离的新型膜分离技术,具有高效节能、环境友好和容易操作等优点,特别是能够实现热敏性物质的高效单级分离,因此在挥发性精油的分离和挥发性芳香化合物组分精制等方面具有巨大的应用潜力。本文系统总结了渗透汽化技术在挥发性精油分离领域的最新进展,综述了用于分离挥发性精油的渗透汽化膜材料、分离工艺及其应用现状,并对渗透汽化用于大规模分离挥发性精油过程中面临的挑战进行了讨论。  相似文献   
7.
汉逊氏葡糖酸醋杆菌(Gluconacetobacter hansenii)利用传统Hestrin-Scharmm (HS)培养基发酵生产细菌纤维素(bacterial cellulose,BC)的过程中,普遍存在着BC产量不高、葡萄糖利用率低等问题。本研究首先比较了传统HS培养基和改良HS培养基发酵生产BC的结果,改良HS培养基中BC干重产量达到3.34g/L,较传统HS培养基提高了28%,但培养基废液中仍含有41%和70%的残糖和残氮;继而对改良HS培养基一次发酵废液进行优化,添加2.5 g/L酵母粉和1.8 g/L磷酸氢二钠,调节p H至5.9进行二次发酵,可获得3.16 g/L的BC干重,同时发酵液中副产物乙酸浓度仅为一次发酵的一半。综上,利用改良HS培养基发酵结合优化发酵废液进行二次发酵,共获得6.50 g/L的BC干重,是优化前的2.5倍以上,并且葡萄糖的利用率和转化率也分别由56.74%,22.86%提高至88.02%,36.87%。  相似文献   
8.
卡拉胶(carrageenan)是一种从海洋红藻细胞壁中提取出来的多糖物质,通过1,3-β-D-吡喃半乳糖和1,4-α-D -吡喃半乳糖交替连接作为基本骨架形成的线性硫酸多糖。研究表明,卡拉胶及其分子修饰后获得的衍生物具有抗肿瘤、抗病毒、抗凝血、增强人体细胞免疫和体液免疫力等多方面生物活性。卡拉胶酶属于糖苷水解酶,通过使β-1,4糖苷键断裂来降解卡拉胶。卡拉胶硫酸酯酶又被称作卡拉胶硫酸化酶,是一种作用于卡拉胶寡糖的硫酸基使之游离出无机硫酸的酶。经研究证实,这两种酶对于卡拉胶多糖的降解具有协同作用。然而由于卡拉胶多糖结构的复杂性,人们对于卡拉胶的降解及分子修饰大多数尚未探索。现如今,随着技术的进步以及卡拉胶多糖生物活性的多样性,卡拉胶多糖的分子修饰引起了相关研究者的持续关注。作者概括了近年来卡拉胶多糖的分子修饰,重点介绍了卡拉胶酶和硫酸化酶的研究进展,进一步阐述了其修饰后的生理活性变化。  相似文献   
9.
将纳米有机硅Silicalite-1添加到聚二甲基硅氧烷(polydimethylsiloxane,PDMS)中制备出Silicalite-1/PDMS杂化膜,用于红茶中挥发性芳香物的渗透汽化分离。在乙醇-水体系中的研究显示,添加Silicalite-1会引起乙醇通量的下降,但对分离因子有明显改善。考察了Silicalite-1/PDMS杂化膜对水杨酸甲酯、芳樟醇和苯甲醛等3种红茶特征性芳香物的渗透汽化分离性能,结果表明,Silicalite-1/PDMS杂化膜(Silicalite-1质量分数为5%)对3种化合物的渗透通量和分离因子均较PDMS/PVDF膜有明显改善,在温度50℃、流速0. 32 L/min条件下分离5 h,水杨酸甲酯、芳樟醇和苯甲醛的渗透通量分别较PDMS/PVDF膜提高了50. 50%、176. 10%和197. 90%,分离因子提高了23. 50%、17. 80%和62. 70%。测试了Silicalite-1/PDMS杂化膜对实际茶汤中挥发性芳香物的分离富集效果,在50℃、循环流速0. 32 L/min的条件下连续分离5 h,茶汤中水杨酸甲酯、苯甲醛和芳樟醇的回收率分别为96. 67%、86. 42%和84. 91%,应用效果良好。  相似文献   
10.
本文以云南昆明石林地区的桑木耳为原料,优化了桑木耳多糖水提工艺,并对多糖的益生活性和体外抗氧化活性进行分析。通过单因素试验结合响应面法获得了优化的桑木耳多糖水提工艺为:在料液比 1:108(m/V),提取温度 100 ℃,提取时间 3.5 h时,单次提取率达 6.96%,经 10 次重复提取,多糖总得率高达 34.18%。经凝胶色谱柱测定桑木耳多糖的重均分子量为 2.09×107 u。采用离子色谱对桑木耳多糖的单糖组成进行分析,发现其主要单糖组分为葡萄糖,木糖和甘露糖,摩尔质量比为 1.18:0.65:2.88。红外光谱结果显示,该多糖含有 β 型吡喃糖苷键。益生活性和抗氧化活性研究表明,桑木耳多糖可有效促进两歧双歧杆菌和青春双歧杆菌的增殖,并具有良好的 ABTS 自由基和羟自由基清除能力。桑木耳多糖浓度为 10 mg/m L 时,对 ABTS 自由基、羟基自由基的清除率分别达到 98.93%和 71.28%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号