首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   921篇
  免费   65篇
  国内免费   2篇
工业技术   988篇
  2024年   2篇
  2023年   7篇
  2022年   3篇
  2021年   37篇
  2020年   38篇
  2019年   18篇
  2018年   29篇
  2017年   26篇
  2016年   31篇
  2015年   31篇
  2014年   42篇
  2013年   72篇
  2012年   65篇
  2011年   69篇
  2010年   63篇
  2009年   60篇
  2008年   56篇
  2007年   57篇
  2006年   48篇
  2005年   49篇
  2004年   33篇
  2003年   20篇
  2002年   22篇
  2001年   10篇
  2000年   19篇
  1999年   11篇
  1998年   6篇
  1997年   9篇
  1996年   10篇
  1995年   6篇
  1994年   11篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1934年   3篇
排序方式: 共有988条查询结果,搜索用时 34 毫秒
1.
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal, has been synthesized and studied for in vivo 64Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal. The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64Cu]Cu-GluCAB-2Mal and previous-generation [64Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64Cu]Cu-Glu-CAB-2Mal.  相似文献   
2.
The bone marrow (BM) microenvironment plays a crucial role in the development and progression of leukemia (AML). Intracellular reactive oxygen species (ROS) are involved in the regulation of the biology of leukemia-initiating cells, where the antioxidant enzyme GPx-3 could be involved as a determinant of cellular self-renewal. Little is known however about the role of the microenvironment in the control of the oxidative metabolism of AML cells. In the present study, a coculture model of BM mesenchymal stromal cells (MSCs) and AML cells (KG1a cell-line and primary BM blasts) was used to explore this metabolic pathway. MSC-contact, rather than culture with MSC-conditioned medium, decreases ROS levels and inhibits the Nrf-2 pathway through overexpression of GPx3 in AML cells. The decrease of ROS levels also inactivates p38MAPK and reduces the proliferation of AML cells. Conversely, contact with AML cells modifies MSCs in that they display an increased oxidative stress and Nrf-2 activation, together with a concomitant lowered expression of GPx-3. Altogether, these experiments suggest that a reciprocal control of oxidative metabolism is initiated by direct cell–cell contact between MSCs and AML cells. GPx-3 expression appears to play a crucial role in this cross-talk and could be involved in the regulation of leukemogenesis.  相似文献   
3.
ABSTRACT

Energetic materials are often disposed by open-burning or open-detonation as it is a cost-effective and efficient means of destroying explosive material, and often minimizes the need to transport hazardous explosives to treatment facilities. This practice is often scrutinized for the negative environmental impact of the odorous and unsightly toxic gaseous emissions as well as the resulting deposition residues, which often contain unburned energetic materials. With the increasing use of Insensitive High Explosive compositions in munitions, it is essential that the potential environmental impact of their disposal is assessed before their extensive use to prevent the kind of contamination incidents experienced with legacy explosives. Therefore, the aim of this work was to develop a controlled laboratory experiment to identify the gaseous emissions and the energetic material residues that are generated through the combustion of the IHE components 3-nitro-1,2,4-triazol-5-one (NTO), 2,4-dinitroanisole (DNAN), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). A sealed vial containing small (mg) quantities of energetic material was heated until the energetic material combusted. Gas chromatography/mass spectrometry (GCMS) was used to calculate the oxygen consumption and to identify the gases that were generated. The solid residues were analyzed by high-performance liquid chromatography (HPLC) to quantify unburned energetic material. Results showed that DNAN was the most resistant to burning, thus leaving significant quantities of unreacted starting material in the vial. An interesting observation for the IHE formulation was that DNAN also inhibited the combustion of NTO and RDX. The gases emitted during the open burning of IHE components and mixtures included CO, CO2, and N2O as expected, but the proportions differed when the components and mixture were compared, reflecting the influence of DNAN on the burning behavior. From our data, we concluded that open-burning DNAN-based formulations is an environmentally unfavorable waste-management practice for the disposal of IHEs mainly due to generation of solid residues as well as unburnt DNAN.  相似文献   
4.
5.
6.
To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed.  相似文献   
7.
8.
Searching high capacity cathode materials is one of the most important fields of the research and development of sodium‐ion batteries (SIBs). Here, we report a FeO0.7F1.3/C nanocomposite synthesized via a solution process as a new cathode material for SIBs. This material exhibits a high initial discharge capacity of 496 mAh g?1 in a sodium cell at 50 °C. From the 3rd to 50th cycle, the capacity fading is only 0.14% per cycle (from 388 mAh g?1 at 3rd the cycle to 360 mAh g?1 at the 50th cycle), demonstrating superior cyclability. A high energy density of 650 Wh kg?1 is obtained at the material level. The reaction mechanism studies of FeO0.7F1.3/C with sodium show a hybridized mechanism of both intercalation and conversion reaction.  相似文献   
9.
There are many potential causes of corrosion in animal buildings. Animals exhale large quantities of moisture into the air creating high relative humidity in the building if the moisture is not properly vented. High humidity increases the potential for condensation. In addition, ammonia may be found in large quantities in animal buildings. Ammonia is released from manure and urine. In addition, ammonium chloride is used as a nitrogen source in fertilisers. In this study, the atmospheric corrosion of hot-dip-galvanised steel and zinc alloy-coated steel such as zinc–aluminium and zinc–aluminium–magnesium has been studied in atmospheres containing different levels of ammonia. Investigations have also been conducted at different levels of ammonium chloride. The results are discussed in view of the mechanisms of corrosion of zinc and zinc alloy-coated steel in ammonia and ammonium chloride-containing environments.  相似文献   
10.
The densification of CaLa2S4 (CLS) powders prepared by combustion method was investigated by the use of Field-Assisted Sintering Technique (FAST) and Hot Pressing (HP). CLS powders were sintered using FAST at 1000°C at different pressures and heating rates and sintered by HP under 120 MPa from 800°C to 1100°C for 6 hours with a heating rate of 10°C/min. Comparison of both techniques was further realized by use of the same conditions of pressure, dwell time, and heating rate. Complementary techniques (XRD, SEM-EDS, density measurements, FTIR spectroscopy) were employed to correlate the sintering processes/parameters to the microstructural/compositional developments and optical transmission of the ceramics. Both sintering techniques produce ceramics with submicrometer grain size and relative density of about 99%. Nevertheless, HP is more suitable to densify CLS ceramics without fragmentation and also reach higher transmission than FAST. Transmission of 40%–45% was measured out of a possible maximum of 69% based on the Fresnel losses in the 8-14 μm window when HP is applied at 1000°C for 6 hours under 120 MPa. In both techniques, ceramics undergo reduction issues that originate from graphitic sintering atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号