首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven ‘backward’ conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.  相似文献   

2.
Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy.  相似文献   

3.
Mitochondria are involved either directly or indirectly in oncogenesis and the alteration of metabolism in cancer cells. Cancer cells contain large numbers of abnormal mitochondria and produce large amounts of reactive oxygen species (ROS). Oxidative stress is caused by an imbalance between the production of ROS and the antioxidant capacity of the cell. Several cancer therapies, such as chemotherapeutic drugs and radiation, disrupt mitochondrial homeostasis and release cytochrome c, leading to apoptosome formation, which activates the intrinsic pathway. This is modulated by the extent of mitochondrial oxidative stress. The peroxiredoxin (Prx) system is a cellular defense system against oxidative stress, and mitochondria in cancer cells are known to contain high levels of Prx III. Here, we review accumulating evidence suggesting that mitochondrial oxidative stress is involved in cancer, and discuss the role of the mitochondrial Prx III antioxidant system as a potential target for cancer therapy. We hope that this review will provide the basis for new strategic approaches in the development of effective cancer treatments.  相似文献   

4.
In the last decades, the therapeutic potential of hematopoietic stem cell transplantation (HSCT) has acquired a primary role in the management of a broad spectrum of diseases including cancer, hematologic conditions, immune system dysregulations, and inborn errors of metabolism. The different types of HSCT, autologous and allogeneic, include risks of severe complications including acute and chronic graft-versus-host disease (GvHD) complications, hepatic veno-occlusive disease, lung injury, and infections. Despite being a dangerous procedure, it improved patient survival. Hence, its use was extended to treat autoimmune diseases, metabolic disorders, malignant infantile disorders, and hereditary skeletal dysplasia. HSCT is performed to restore or treat various congenital conditions in which immunologic functions are compromised, for instance, by chemo- and radiotherapy, and involves the administration of hematopoietic stem cells (HSCs) in patients with depleted or dysfunctional bone marrow (BM). Since HSCs biology is tightly regulated by oxidative stress (OS), the control of reactive oxygen species (ROS) levels is important to maintain their self-renewal capacity. In quiescent HSCs, low ROS levels are essential for stemness maintenance; however, physiological ROS levels promote HSC proliferation and differentiation. High ROS levels are mainly involved in short-term repopulation, whereas low ROS levels are associated with long-term repopulating ability. In this review, we aim summarize the current state of knowledge about the role of β3-adrenoreceptors (β3-ARs) in regulating HSCs redox homeostasis. β3-ARs play a major role in regulating stromal cell differentiation, and the antagonist SR59230A promotes differentiation of different progenitor cells in hematopoietic tumors, suggesting that β3-ARs agonism and antagonism could be exploited for clinical benefit.  相似文献   

5.
In the follicular lymphoma (FL) microenvironment, CXCR5+ICOS+PD1+BCL6+ follicular helper T (Tfh) cells, which closely correlate with FL B cells in neoplastic follicles, play a major role in supporting FL. Interleukin-4 secreted by Tfh cells triggers the upregulation of the lymphocyte chemoattractant CXCL12 in stromal cell precursors, in particular by fibroblastic reticular cells (FRCs). In turn, mesenchymal stem cells (MSCs) can be committed to FRC differentiation in the bone marrow and lymph nodes involved by FL. Noteworthy, MSCs can promote the differentiation of Tfh cells into highly immunosuppressive T-follicular regulatory cells. The tumor suppressor HVEM is highly mutated in FL cells, and its deficiency increases Tfh cell frequency. In contrast, PI3Kδ inhibition impedes the recruitment of Tfh/regulatory T cells and impairs the proliferation of follicular dendritic cells (FDCs) and FDC-induced angiogenesis. Since TIGIT ligands are expressed by FDCs, the immune checkpoint receptor TIGIT plays an important role in tumor-infiltrating T cells. Thus, TIGIT blockade might invigorate cytotoxic T cells in the FL microenvironment. Given their potential to simultaneously reduce the neoplastic B cells, Tfh, and TFR cells could also reinforce the effects of the cytotoxic T cells. This combinatory strategy should be explored as a treatment option to tackle FL.  相似文献   

6.
With the applications of quantum dots (QDs) expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe) QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12). CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA) in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS) and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2) deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.  相似文献   

7.
Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.  相似文献   

8.
Superoxide dismutase 3 (SOD3), also known as extracellular superoxide dismutase, is an enzyme that scavenges reactive oxygen species (ROS). It has been reported that SOD3 exerts anti-inflammatory abilities in several immune disorders. However, the effect of SOD3 and the underlying mechanism in inflammatory bowel disease (IBD) have not been uncovered. Therefore, in the present study, we investigated whether SOD3 can protect intestinal cells or organoids from inflammation-mediated epithelial damage. Cells or mice were treated with SOD3 protein or SOD3-transduced mesenchymal stem cells (MSCs). Caco-2 cells or intestinal organoids stimulated with pro-inflammatory cytokines were used to evaluate the protective effect of SOD3 on epithelial junctional integrity. Dextran sulfate sodium (DSS)-induced colitis mice received SOD3 or SOD3-transduced MSCs (SOD3-MSCs), and were assessed for severity of disease and junctional protein expression. The activation of the mitogen-activated protein kinase (MAPK) pathway and elevated expression of cytokine-encoding genes decreased in TNF-α-treated Caco-2 cells or DSS-induced colitis mice when treated with SOD3 or SOD3-MSCs. Moreover, the SOD3 supply preserved the expression of tight junction (ZO-1, occludin) or adherence junction (E-cadherin) proteins when inflammation was induced. SOD3 also exerted a protective effect against cytokine- or ROS-mediated damage to intestinal organoids. These results indicate that SOD3 can effectively alleviate enteritis symptoms by maintaining the integrity of epithelial junctions and regulating inflammatory- and oxidative stress.  相似文献   

9.
Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.  相似文献   

10.
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.  相似文献   

11.
Osteosarcoma (OS) is an aggressive bone tumor that mainly affects children and adolescents. OS has a strong tendency to relapse and metastasize, resulting in poor prognosis and survival. The high heterogeneity and genetic complexity of OS make it challenging to identify new therapeutic targets. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into adipocytes, osteoblasts, or chondroblasts. OS is thought to originate at some stage in the differentiation process of MSC to pre-osteoblast or from osteoblast precursors. MSCs contribute to OS progression by interacting with tumor cells via paracrine signaling and affect tumor cell proliferation, invasion, angiogenesis, immune response, and metastasis. Extracellular vesicles (EVs), secreted by OS cells and MSCs in the tumor microenvironment, are crucial mediators of intercellular communication, driving OS progression by transferring miRNAs/RNA and proteins to other cells. MSC-derived EVs have both pro-tumor and anti-tumor effects on OS progression. MSC-EVs can be also engineered to deliver anti-tumor cargo to the tumor site, which offers potential applications in MSC-EV-based OS treatment. In this review, we highlight the role of MSCs in OS, with a focus on EV-mediated communication between OS cells and MSCs and their role in OS pathogenesis and therapy.  相似文献   

12.
Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.  相似文献   

13.
The development of drug resistance in tumors is a major obstacle to effective cancer chemotherapy and represents one of the most significant complications to improving long-term patient outcomes. Despite early positive responsiveness to platinum-based chemotherapy, the majority of lung cancer patients develop resistance. The development of a new combination therapy targeting cisplatin-resistant (CR) tumors may mark a major improvement as salvage therapy in these patients. The recent resurgence in research into cellular metabolism has again confirmed that cancer cells utilize aerobic glycolysis (“the Warburg effect”) to produce energy. Hence, this observation still remains a characteristic hallmark of altered metabolism in certain cancer cells. However, recent evidence promotes another concept wherein some tumors that acquire resistance to cisplatin undergo further metabolic alterations that increase tumor reliance on oxidative metabolism (OXMET) instead of glycolysis. Our review focuses on molecular changes that occur in tumors due to the relationship between metabolic demands and the importance of NAD+ in redox (ROS) metabolism and the crosstalk between PARP-1 (Poly (ADP ribose) polymerase-1) and SIRTs (sirtuins) in CR tumors. Finally, we discuss a role for the tumor metabolites of the kynurenine pathway (tryptophan catabolism) as effectors of immune cells in the tumor microenvironment during acquisition of resistance in CR cells. Understanding these concepts will form the basis for future targeting of CR cells by exploiting redox-metabolic changes and their consequences on immune cells in the tumor microenvironment as a new approach to improve overall therapeutic outcomes and survival in patients who fail cisplatin.  相似文献   

14.
Ultraviolet B (UV-B) radiation induces the extreme production of either reactive oxygen species (ROS) or inflammatory mediators. The aim of this study was to evaluate the antioxidant activities of 70% ethanolic extract of Lablab purpureus (LPE) and the underlying mechanisms using HaCaT cells exposed to UV-B. High-performance liquid chromatography (HPLC) confirmed the presence of gallic acid, catechin, and epicatechin in LPE. LPE was shown to have a very potent capacity to scavenge free radicals. The results showed that LPE prevented DNA damage and inhibited the generation of ROS in HaCaT cells without causing any toxicity. LPE increased the expression of endogenous antioxidant enzymes such as superoxide dismutase-1 and catalase. Furthermore, LPE treatment facilitates the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), boosting the phase II detoxifying enzyme heme oxygenase-1 (HO-1) leading to the combatting of oxidative stress. However, pretreatment of LPE also caused the phosphorylation of mitogen-activated protein kinases (MAPK kinase) (p38 kinase) and extracellular signal-regulated kinase (ERK), whereas treatment with p38 and ERK inhibitors substantially suppressed LPE-induced Nrf2 and heme oxygenase (HO)-1 expression. These findings suggest that LPE exhibits antioxidant activity via Nrf-2-mediated HO-1 signaling through the activation of p38 and ERK, indicating that LPE can potentially be used as a remedy to combat oxidative stress-induced disorder.  相似文献   

15.
The establishment of antioxidative defense systems might have been mandatory for most living beings with aerobic metabolisms, because oxygen consumption produces adverse byproducts known as reactive oxygen species (ROS). The brain is especially vulnerable to the effect of ROS, since the brain has large amounts of unsaturated fatty acids, which are a target of lipid oxidation, as well as comparably high-energy consumption compared to other organs that results in ROS release from mitochondria. Thus, dysregulation of the synthesis and/or metabolism of antioxidants—particularly glutathione (GSH), which is one of the most important antioxidants in the human body—caused oxidative stress states that resulted in critical diseases, including neurodegenerative diseases in the brain. GSH plays crucial roles not only as an antioxidant but also as an enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. The levels of GSH are precisely regulated by uptake systems for GSH precursors as well as GSH biosynthesis and metabolism. The rapid advance of RNA sequencing technologies has contributed to the discovery of numerous non-coding RNAs with a wide range of functions. Recent lines of evidence show that several types of non-coding RNAs, including microRNA, long non-coding RNA and circular RNA, are abundantly expressed in the brain, and their activation or inhibition could contribute to neuroprotection through the regulation of GSH synthesis and/or metabolism. Interestingly, these non-coding RNAs play key roles in gene regulation and growing evidence indicates that non-coding RNAs interact with each other and are co-regulated. In this review, we focus on how the non-coding RNAs modulate the level of GSH and modify the oxidative stress states in the brain.  相似文献   

16.
Oxidative stress is an important factor in the occurrence and development of liver disease. Medium-chain fatty acids (MCFAs) have potential antioxidant function, whereas the exact underlying mechanism of MCFA in oxidative injury of hepatocytes remains unclear. In our present study, three different MCFAs, 8-carbon octanoic acid (OA), 10-carbon capric acid (CA), and 12-carbon lauric acid (LA), have been performed to observe their protective action for hepatocyte under the H2O2 challenge. The result showed that MCFA treatment significantly increased the cell viability, T-AOC, and expression of antioxidant-related genes in AML12 cells under oxidative stress condition, and reduced reactive oxygen species (ROS) production. Moreover, MCFA treatment significantly increased the protein expression of Nrf2 and the phosphorylation level of ERK1/2; LA treatment significantly promoted the Nrf2 nuclear translocation. With a further test, the rescue ability of MCFA was blocked by treating with the ERK inhibitor U0126. Overall, our data suggested that MCFA treatment has positive impact on protecting AML12 cells against oxidative stress through ERK1/2/Nrf2 pathway.  相似文献   

17.
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3′ untranslated region (3′-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.  相似文献   

18.
The LATS1 kinase has been described as a tumor suppressor in various cancers. However, its role in melanoma has not been fully elucidated. There are several processes involved in tumorigenesis, including melanin production. Melanin content positively correlates with the level of reactive oxygen species (ROS) inside the cell. Accordingly, the purpose of the study was to assess the role of LATS1 in melanogenesis and oxidative stress and its influence on tumor growth. We have knocked down LATS1 in primary melanocytes and melanoma cells and found that its expression is crucial for melanin synthesis, ROS production, and oxidative stress response. We showed that LATS1 ablation significantly decreased the melanogenesis markers’ expression and melanin synthesis in melanocyte and melanoma cell lines. Moreover, silencing LATS1 resulted in enhanced oxidative stress. Reduced melanin content in LATS1 knocked down tumors was associated with increased tumor growth, pointing to melanin’s protective role in this process. The study demonstrated that LATS1 is highly engaged in melanogenesis and oxidative stress control and affects melanoma growth. Our results may find the implications in the diagnosis and treatment of pigmentation disorders, including melanoma.  相似文献   

19.
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.  相似文献   

20.
Reactive oxygen species (ROS) plays a key role in the pathogenesis of primary open-angle glaucoma (POAG), a chronic neurodegenerative disease that damages the trabecular meshwork (TM) cells, inducing apoptosis of the retinal ganglion cells (RGC), deteriorating the optic nerve head, and leading to blindness. Aqueous humor (AH) outflow resistance and intraocular pressure (IOP) elevation contribute to disease progression. Nevertheless, despite the existence of pharmacological and surgical treatments, there is room for the development of additional treatment approaches. The following review is aimed at investigating the role of different microRNAs (miRNAs) in the expression of genes and proteins involved in the regulation of inflammatory and degenerative processes, focusing on the delicate balance of synthesis and deposition of extracellular matrix (ECM) regulated by chronic oxidative stress in POAG related tissues. The neutralizing activity of a couple of miRNAs was described, suggesting effective downregulation of pro-inflammatory and pro-fibrotic signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), transforming growth factor-beta 2 (TGF-β2), Wnt/β-Catenin, and PI3K/AKT. In addition, with regards to the elevated IOP in many POAG patients due to increased outflow resistance, Collagen type I degradation was stimulated by some miRNAs and prevented ECM deposition in TM cells. Mitochondrial dysfunction as a consequence of oxidative stress was suppressed following exposure to different miRNAs. In contrast, increased oxidative damage by inhibiting the mTOR signaling pathway was described as part of the action of selected miRNAs. Summarizing, specific miRNAs may be promising therapeutic targets for lowering or preventing oxidative stress injury in POAG patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号