首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108226篇
  免费   11401篇
  国内免费   6952篇
工业技术   126579篇
  2024年   189篇
  2023年   1409篇
  2022年   2707篇
  2021年   4120篇
  2020年   3106篇
  2019年   2613篇
  2018年   2848篇
  2017年   3326篇
  2016年   3099篇
  2015年   4532篇
  2014年   5861篇
  2013年   6836篇
  2012年   8044篇
  2011年   8881篇
  2010年   8305篇
  2009年   7934篇
  2008年   7949篇
  2007年   7739篇
  2006年   7247篇
  2005年   5734篇
  2004年   4308篇
  2003年   3691篇
  2002年   3681篇
  2001年   3113篇
  2000年   2344篇
  1999年   1704篇
  1998年   1048篇
  1997年   878篇
  1996年   739篇
  1995年   609篇
  1994年   469篇
  1993年   361篇
  1992年   244篇
  1991年   208篇
  1990年   152篇
  1989年   134篇
  1988年   82篇
  1987年   66篇
  1986年   69篇
  1985年   28篇
  1984年   26篇
  1983年   30篇
  1982年   21篇
  1981年   23篇
  1980年   16篇
  1979年   11篇
  1977年   8篇
  1976年   3篇
  1959年   17篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
电磁超声换能器一般采用具有超强磁力的稀土永磁制作,在实际检测中由于磁力不可控,存在偏置磁场不够强导致换能效率过低和磁力过强造成操作不方便等问题.提出一种偏置磁场磁力可控的电磁超声换能器,采用电磁铁与永磁铁相结合的方式,达到偏置磁场磁力可控的目的.通过有限元仿真和试验得出,提出的偏置磁场磁力可控的电磁超声换能器,在电磁铁处于关闭模式下,永磁铁能够提供基础磁场;采用增强模式或减弱模式,无被测物时,换能器下表面平均垂直磁通最大分别增强78.58%和减弱19.36%,而提离2 mm检测钢板时,换能器下方钢板表面平均垂直磁通最大分别增强52.99%和减弱38.02%;得出3种模式下,探头磁力随着提离距离缩小而增强的试验曲线;通过增强模式对铝板和钢板进行测厚试验,将检测信号幅值分别提高46.91%和62.01%.所设计的磁力可控电磁超声换能器不仅具有磁力可控的功能,还能够提高检测信号幅值.  相似文献   
3.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
4.
5.
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.  相似文献   
6.
The strengthening method of multi-element M-site solid solution is a common approach to improve mechanical properties of MAX phase ceramic. However, the research on capability of multi-element A-site solid solution to improve mechanical properties has rarely been reported. Thereupon, quasi-high-entropy MAX phase ceramic bulks of Ti2(Al1?xAx)C and Ti3(Al1?xAx)C2 (A = Ga, In, Sn, x = 0.2, 0.3, 0.4) were successfully synthesized by in situ vacuum hot pressing via multi-elements solid solution. The multi-elements solid solution in single-atom thick A layer was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy as well as by energy dispersive X-ray spectroscopy mappings. Effects of doped multi-elements contents on the phase, microstructure, mechanical properties, and high temperature tribological behaviors were studied. Results demonstrated that the Vickers hardness, anisotropic flexural strength, fracture toughness, and tribological properties of Ti–Al–C based MAX ceramics could be remarkably improved by constitution of quasi-high-entropy MAX phase in A layers. Moreover, the strengthening and wear mechanisms were also discussed in detail. This method of multi-element solid solution at A-site provides new way to enhance mechanical properties of other MAX phase ceramics.  相似文献   
7.
Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell–deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.  相似文献   
8.
蔡俊 《当代化工》2021,50(5):1069-1073
基于电沉积法,针对某铝箔生产企业所产生的高含铝离子废水,通过不同峰值电流密度下形成的电沉积试样的相关电化学曲线测试结果和镀层中的Al质量分数分析,确定所采用电沉积法的最佳峰值电流密度为9 A·dm-2,此时沉积层中铝质量分数为33.21%,原子数量占比为24.69%.  相似文献   
9.
气藏平均地层压力跟踪计算新方法   总被引:1,自引:0,他引:1  
平均地层压力是产能评价和动态分析的基础,准确、快速获取平均地层压力对高效开发气藏意义重大。基于地层压力随时间变化的规律,分析了平均地层压力的变化规律。研究结果表明:平均地层压力等效点仅随时间发生改变,平均地层压力的下降速率等于或者近似等于井底流压的下降速率。从封闭弹性驱动气藏的物质平衡方程出发,考虑偏差系数和井底流压随平均地层压力的变化,推导建立了平均地层压力跟踪计算新方法,根据生产数据可迭代计算平均地层压力。方法验证结果显示,采气速度和采出程度共同影响模型的计算结果。应用实例表明,跟踪计算法与压力恢复试井和物质平衡法之间的相对误差均较小,满足工程计算精度要求,且跟踪计算法不需依托生产测试数据,节约了测试费用,避免了测试占产。  相似文献   
10.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号