首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6616篇
  免费   406篇
  国内免费   11篇
工业技术   7033篇
  2024年   3篇
  2023年   67篇
  2022年   74篇
  2021年   292篇
  2020年   187篇
  2019年   236篇
  2018年   252篇
  2017年   233篇
  2016年   330篇
  2015年   187篇
  2014年   354篇
  2013年   586篇
  2012年   507篇
  2011年   571篇
  2010年   428篇
  2009年   442篇
  2008年   397篇
  2007年   329篇
  2006年   218篇
  2005年   182篇
  2004年   164篇
  2003年   155篇
  2002年   138篇
  2001年   72篇
  2000年   51篇
  1999年   58篇
  1998年   56篇
  1997年   55篇
  1996年   49篇
  1995年   54篇
  1994年   44篇
  1993年   31篇
  1992年   37篇
  1991年   19篇
  1990年   25篇
  1989年   26篇
  1988年   21篇
  1987年   13篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   5篇
  1981年   10篇
  1980年   7篇
  1979年   3篇
  1978年   7篇
  1977年   7篇
  1976年   5篇
  1974年   2篇
排序方式: 共有7033条查询结果,搜索用时 140 毫秒
1.
Tribology Letters - Most asteroids with a diameter larger than $$\sim 300 \ {\mathrm{m}}$$ are rubble piles, i.e., consisting of more than one solid object. All asteroids are rotating but almost...  相似文献   
2.
The microstructural development during crystallization firing of a commercially-available dental-grade nanostructured lithia-zirconia glass-ceramic (Vita Suprinity® PC) was unraveled using a wide battery of ex-situ and in-situ characterization techniques. It was found that the milling blocks are slightly crystallized glass-ceramics, with a complex chemical composition and consisting of partially de-polymerized glass plus lithium silicate (Li2SiO3) nanocrystals. It was also found that during crystallization firing the glassy matrix first reacts with part of the Li2SiO3 to form lithium disilicate (Li2Si2O5) at ~810?820 °C, and then lithium orthophosphate (Li3PO4) precipitates from the glass. This results in glass-ceramics with abundant nanocrystals embedded in a sparse zirconosilicate glass matrix (containing many other cations subsumed) that, due to its high viscosity, inhibited crystal growth. Therefore, these dental glass-ceramics are not reinforced with zirconia (ZrO2) crystals unless over-fired above ~890 °C and at the expense of its singular nanostructure. Finally, this study opens doors for optimizing the clinical performance of these dental glass-ceramics via microstructural tailoring.  相似文献   
3.
4.
A novel series of cleavable alkyltrimethylammonium surfactants with different hydrocarbon chain lengths (C8–16) were synthesized. A carbonate break site inserted between the polar head and the hydrocarbon chain makes these compounds hydrolyzable. The reagents used are renewable, (bio)degradable, or reusable. The hydrolysis of these cleavable surfactants will lead to the generation of fatty alcohols and choline, which is an essential biological nutrient. The surface activities in aqueous solution of the synthesized carbonates fulfill the requirement of being good surfactants. In addition, the cleavable compounds containing n-decyl and n-dodecyl chains showed similar or higher antimicrobial activities when compared to a non-cleavable analog.  相似文献   
5.
Enzymatic nanoreactors were obtained by galactose-1-phosphate uridylyl-transferase (GALT) encapsulation into plant virus capsids by a molecular self-assembly strategy. The aim of this work was to produce virus-like nanoparticles containing GALT for an enzyme-replacement therapy for classic galactosemia. The encapsulation efficiency and the catalytic constants of bio-nanoreactors were determined by using different GALT and virus coat protein ratios. The substrate affinity of nanoreactors was slightly lower than that of the free enzyme; the activity rate was 16 % of the GALT free enzyme. The enzymatic nanoreactors without functionalization were internalized into different cell lines including fibroblast and kidney cells, but especially into hepatocytes. The enzymatic nanoreactors are an innovative enzyme preparation with potential use for the treatment of classic galactosemia.  相似文献   
6.
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.  相似文献   
7.
Cysteine is present in a large number of natural and synthetic (bio)molecules. Although the thiol side chain of Cys can be in a free form, in most cases it forms a disulfide bond either with a second Cys (bridge) or with another thiol, as in the case of protecting groups. Efficient reduction of these disulfide bridges is a requirement for many applications of Cys-containing molecules in the fields of chemistry and biochemistry. Here we review reducing methods for disulfide bonds, taking into consideration the solubility of the substrates when selecting the appropriate reducing reagent.  相似文献   
8.
Herein, the design, synthesis, and characterization of bifunctional hybrid nanoreactors used for concurrent one‐pot chemoenzymatic reactions are shown. In the design, the enzyme, glucose oxidase, is wrapped with a peroxidase‐mimetic catalytic polymer. Hemin, the organic catalyst, is linked to the flexible polymeric scaffold through coordination to the imidazole groups that hang out the network. This spatial arrangement, which works as a metabolic channel, is optimized for cooperative chemoenzymatic reactions in which the enzyme catalyzes first. A deep characterization of the integrated nanoreactors demonstrates that the confinement of two distinct catalytic sites in the nanospace is very effective in one‐pot reactions. Moreover, besides its role as scaffold material, the polymeric mantel protects both the biocatalyst and the chemical catalyst from degradation and inactivation in the presence of organic solvents. Furthermore, the polymeric environment of the nanoreactors can be tailored in order to trigger the assembly of those into highly active heterogeneous hybrid catalysts. Finally, the new nanoreactors are applied to the efficient degradation of organic aromatic compounds using glucose as the only fuel.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号