首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Porous titanium is being developed as an alternative orthopedic implant material to alleviate the inherent problems of bulk metallic implants by reducing the stiffness to be comparable to bone stiffness and allowing complete bone ingrowth. However, a porous microstructure is susceptible to local permanent plastic strain and residual stress under cyclic loading which reduces damage tolerance and therefore limits their application as orthopedic implants. The mechanical properties of porous titanium are governed by the microstructural configurations such as pore morphology, porosity, and bone ingrowth. To understand the influence of these features on performance, the macroscopic and microscopic responses of porous Ti are studied using three-dimensional finite element models. The models are generated based on simulated microstructures of experimental materials at porosities of 15%, 32% and 50%. The results show the effect of porosity and bone ingrowth on Young’s modulus, yield stress, and microscopic stress and strain distribution. Importantly, simulations predict that the bone ingrowth reduces the stress and strain localization under cyclic loading so significantly that it counteracts the concentration condition caused by the increased porosity of the structure.  相似文献   

2.
Despite the fact that additive manufacturing (AM) techniques allow to manufacture complex porous parts with a controlled architecture, differences can occur between designed and as-produced morphological properties. Therefore this study aimed at optimizing the robustness and controllability of the production of porous Ti6Al4V structures using selective laser melting (SLM) by reducing the mismatch between designed and as-produced morphological and mechanical properties in two runs. In the first run, porous Ti6Al4V structures with different pore sizes were designed, manufactured by SLM, analyzed by microfocus X-ray computed tomography (micro-CT) image analysis and compared to the original design. The comparison was based on the following morphological parameters: pore size, strut thickness, porosity, surface area and structure volume. Integration of the mismatch between designed and measured properties into a second run enabled a decrease of the mismatch. For example, for the average pore size the mismatch decreased from 45% to 5%. The demonstrated protocol is furthermore applicable to other 3D structures, properties and production techniques, powder metallurgy, titanium alloys, porous materials, mechanical characterization, tomography.  相似文献   

3.
Titanium and its alloys are commonly used in almost all disciplines of medicine because of their sufficient biocompatibility and meeting of mechanical requirements. However, dense metallic biomaterials represent only an interfacial connection with host tissue, may develop stress shielding which causes ingrowth of the fibrous tissue, and are prone to microbial adhesion and development of biomaterial associated infections. Therefore, development of a new, porous titanium biomaterial is proposed to improve an implant's interconnection with bone, provide better stabilization, and reduce the risk of the loss of the implant. In this review, recent findings in porous titanium biomaterials engineering are discussed, including the structural and strengthening aspects of titanium alloys. The porosity and design of porous structures, as well as the optimization process are also described. An extensive part of this section is dedicated to manufacturing processes. The next section of the review is devoted to osseointegration of porous implants and surface treatment processes, whose purpose are antibacterial activity or local drug delivery. Summarizing the article, some future predictions have been presented.
  相似文献   

4.
Bone resorption events and consequent failure of titanium implants are frequently related to stress-shielding problems, due to stiffness mismatch with respect to bone. This is a mechanical incompatibility problem, which is difficult to resolve because of the challenge of replacing highly anisotropic biomechanical systems, as is the case of dental implants. This work describes the designing, processing and characterisation of cylindrical titanium samples with a longitudinally graded porosity obtained by conventional powder-metallurgy techniques. The design concept used was biomimetic, based on the stiffness properties of the tissues to be in contact with titanium dental implants. Processing conditions were optimised in terms of different parameters: structural integrity, porosity and mechanical properties. The influence of sintering temperature was evaluated in search of optimum results under the above criteria. The behaviour of longitudinal porosity and Young’s modulus were consistent with the preliminary design concept from the original biomechanical system. Mechanical strength results were reasonably suitable for dental applications and they were favourably sensitive to increasing sintering temperature, due to a stronger adhesion between initial green layers of cylindrical samples. Results showed that it is possible to obtain a desired longitudinal gradient in Young’s modulus, as well as suitable yield strength values. The optimised processing described suggests that it is a plausible candidate for manufacturing dental implants with a good balance between reduced stress shielding and suitable mechanical strength, which encourages us to undertake further work along the same lines.  相似文献   

5.
The use of porous structures is gaining popularity in biomedical implant manufacture fields due to its ability to promote increased osseointegration and cell proliferation. Selective laser melting (SLM) is a metal additive manufacturing (MAM) technique capable of producing the porous structure. Adjusting the parameter of scan line spacing is a simple and fast way to gain porous structures in SLM process. By using the medical alloy of Ti6Al4V, we systematically study the influence of the scan line spacing on pore characteristics and mechanical properties of porous implant for the first time. The scanning electron microscope (SEM) results show that the porous Ti6Al4V implants with interconnected pore sizes which ranges from 250 to 450 μm is appropriate for compact bone. The compression strength and modulus of the porous Ti6Al4V implants decrease with the increase of the scan line spacing, and two equations by fitting the data have been established to predict their compression properties. The compressive deformation of the porous Ti6Al4V implants presented an adiabatic shear band (ASB) fracture, which is similar to dense Ti6Al4V owing to the dense thin wall structures. The ability to create both high porosity and strong mechanical properties implants opens a new avenue for fabricating porous implants which is used for load-bearing bone defect repair and regeneration.  相似文献   

6.
Porous materials with low stiffness and high strength are sought as implant materials to prevent stress shielding and fracture during in vivo use. This study proposes a powder metallurgy-based space holder technique to fabricate porous titanium with mechanical performance suitable for implant materials. Mixed powders of titanium and sodium chloride were sintered at low temperature using spark plasma sintering, and then the sodium chloride was dissolved in water. As a result, uniform porous titanium (UP-Ti) with a wide range of microstructures: porosity from 26% to 80% and average pore size from 75 μm to 475 μm was successfully fabricated. Also, functionally graded porous titanium (FGP-Ti) was successfully fabricated, in which porous titanium with high porosity and dense titanium were placed at the inside and surface, respectively. The stiffness of UP-Ti was comparable to that of natural bones, but its strength was lower than that of natural bones, which would be insufficient for use as an implant. In contrast, the mechanical performance of FGP-Ti was improved, compared with UP-Ti with the porosity comparable to the average porosity of FGP-Ti: its strength was higher than that of natural bones and its stiffness was comparable to that of natural bones. These results imply that porous titanium, especially functionally graded porous titanium, is a candidate metal for implants used to replace heavily loaded natural bone.  相似文献   

7.
Recent advancements in additive manufacturing (or rapid prototyping) technologies allow the fabrication of end-use components with defined porous structures. For example, one area of particular interest is the potential to modify the flexibility (bending stiffness) of orthopedic implants through the use of engineered porosity (i.e., design and placement of pores) and subsequent fabrication of the implant using additive manufacturing processes. However, applications of engineered porosity require the ability to accurately predict mechanical properties from knowledge or characterization of the pore structure and the existence of robust equations characterizing the property–porosity relationships. As Young’s modulus can be altered by variations in pore shape as well as pore distribution, numerous semi-analytical and theoretical relationships have been proposed to describe the dependence of mechanical properties on porosity. However, the utility and physical meaning of many of these relationships is often unclear as most theoretical models are based on some idealized physical microstructure, and the resulting correlations often cannot be applied to real materials and practical applications. This review summarizes the evolution and development of relationships for the effective Young’s modulus of a porous material and concludes that verifiable equations yielding consistently reproducible results tied to specific pore structures do not yet exist. Further research is needed to develop and validate predictive equations for the effective Young’s modulus over a volume porosity range of 20–50 %, the range of interest over which existing equations, whether based on effective medium theories or empirical results, demonstrate the largest disparity and offers the greatest opportunity for beneficial modification of bending stiffness in orthopedic applications using currently available additive manufacturing techniques.  相似文献   

8.
The high Young’s modulus of titanium with respect to that one of the bone is the main cause of the stress-shielding phenomenon, which promotes bone resorption around implants. Development of implants with a low Young’s modulus has gained increased importance during the last decade, and the manufacturing of porous titanium is one of the routes to reduce this problem. In this work, porous samples of commercially pure titanium grade IV obtained by powder metallurgy with ammonium bicarbonate (NH4HCO3) as space-holder were studied. Evaluations of porosity and mechanical properties were used to determine the influence of compaction pressure for a fixed NH4HCO3 content. Measurements by ultrasound tests gave Young’s modulus results that were low enough to reduce stress shielding, whilst retaining suitable mechanical strength. Biological tests on porous cp Ti showed good adhesion of osteoblasts inside the pores, which is an indicator of potential improvement of osteointegration.  相似文献   

9.
Titanium‐based orthopedic implants are increasingly being fabricated using additive manufacturing (AM) processes such as selective laser melting (SLM), direct laser deposition (DLD), and electron beam melting (EBM). These techniques have the potential to not only produce implants with properties comparable to conventionally manufactured implants, but also improve on standard implant models. These models can be customized for individual patients using medical data, and design features, such as latticing, hierarchical scaffolds, or features to complement patient anatomy, can be added using AM to produce highly functional patient‐anatomy‐specific implants. Alloying prospects made possible through AM allow for the production of Ti‐based parts with compositions designed to reduce modulus and stress shielding while improving bone fixation and formation. The design‐to‐process lead time can be drastically shortened using AM and associated post‐processing, making possible the production of tailored implants for individual patients. This review examines the process and product characteristics of the three major metallic AM techniques and assesses the potential for these in the increased global uptake of AM in orthopedic implant fabrication.
  相似文献   

10.
Bone plates play a vital role in bone fracture healing by providing the necessary mechanical fixation for fracture fragments through modulating biomechanical microenvironment adjacent to the fracture site.Good treatment effect has been achieved for fixation of bone fracture with conventional bone plates,which are made of stainless steel or titanium alloy.However,several limitations still exist with traditional bone plates including loosening and stress shielding due to significant difference in modulus between metal material and bone tissue that impairs optimal fracture healing.Additionally,due to demographic changes and non-physiological loading,the population suffering from refractory fractures,such as osteoporosis fractures and comminuted fractures,is increasing,which imposes a big challenge to traditional bone plates developed for normal bone fracture repair.Therefore,optimal fracture treatment with adequate fixation implants in terms of materials and design relevant to special conditions is desirable.In this review,the complex physiological process of bone healing is introduced,followed by reviewing the development of implant design and biomaterials for bone plates.Finally,we discuss recent development of hybrid bone plates that contains bioactive elements or factors for fracture healing enhancement as a promising direction.This includes biodegradable Mg-based alloy used for designing bone screw-plates that has been proven to be beneficial for fracture healing,an innovative development that attracts more and more attention.This paper also indicates that the tantalum bone plates with porous structure are also emerging as a new fracture internal fixation implants.The reduction of the stress shielding is verified to be useful to accelerate bone fracture healing.Potential application of biodegradable metals may also avoid a second operation for implant removal.Further developments in biometals and their design for orthopedic bone plates are expected to improve the treatment of bone fracture,especially the refractory fractures.  相似文献   

11.
Zr-Ti-Nb porous alloys for biomedical application   总被引:1,自引:0,他引:1  
Recent studies linked to the production of implants focus on the development of porous materials, as they provide good biological fixation to the surrounding tissue through bone tissue ingrowth into the porous network.Research on the biological behavior of metals has shown that the composition of implant biomaterials must be carefully selected to avoid adverse reactions. Ti, Zr and Nb are non-toxic metals with a good compatibility.In the present study, Zr-Ti-Nb foams of two compositions (Zr-34.4%Ti-1.6%Nb and Zr-34.5%Ti-5.5%Nb) were fabricated starting from hydride-dehydride powdered metal using space-holding fillers. Both foams displayed an interconnected porous structure with a porosity of 70%. The average pore size was around 260 μm. The Young's modulus and the compressive plateau stress were observed to vary with the Nb content in the range of 0.3-1.4 GPa and 11-32 MPa, respectively. All alloys tested - in porous and solid forms - showed excellent biocompatibility in subcutaneous as well as in bone tissues. The alloy with more Nb content showed pronounced osteoinductive properties.  相似文献   

12.
Designing load bearing implants with the desired mechanical and biological performance and to fabricate net shape, functional implants with complex anatomical shapes is still a challenge. In addition, patient specific load bearing implants with the possibilities of guided tissue regeneration are gaining significant interest in orthopedics. Novel design approaches and fabrication technologies that can achieve balanced mechanical and functional performance in mono-block implants are necessary to accomplish these objectives. In this article we give an overview of our novel design concepts for load bearing metal implants and demonstrate the manufacturing of unitized implant structures with and/or without porosity using laser engineered net shaping (LENS?) — a solid freeform fabrication technique. We have fabricated porous metal implants with designed porosities up to 70 vol.% in various biomedical metals/alloys, such as Ti, Ti6Al4V, NiTi and CoCrMo, and tailored their effective modulus to suit the modulus of human cortical bone, thus eliminating stress-shielding. Unitized structures with functionally graded CoCrMo alloy coating on porous Ti6Al4V alloy have been fabricated using LENS? to minimize wear induced osteolysis. Finally, this technology can also be used to fabricate porous, net shape implants with functional gradation in structure and/or composition to mimic natural bone. Since the LENS? fabrication does not change the chemistry of the biocompatible alloys the inherent in vitro and in vivo biocompatibility will remain the same and therefore, we have not provided any biocompatibility results in this article. This article provide an insight into the important aspects of LENS? fabrication and properties of CoCrMo alloy structures, which can potentially eliminate long standing challenges in load bearing implants such as total hip prosthesis to increase their in vivo life time.  相似文献   

13.
Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57?%. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210?μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75?% tissue colonization compared to the 40?% value for the untreated titanium.  相似文献   

14.
Fabrication of net shape load bearing implants with complex anatomical shapes to meet desired mechanical and biological performance is still a challenge. In this article, an overview of our research activities is discussed focusing on application of Laser Engineered Net Shaping (LENS) toward load bearing implants to increase in vivo life time. We have demonstrated that LENS can fabricate net shape, complex metallic implants with designed porosities up to 70 vol.% to reduce stress-shielding. The effective modulus of Ti, NiTi, and other alloys was tailored to suit the modulus of human cortical bone by introducing 12-42 vol.% porosity. In addition, laser processed porous NiTi alloy samples show a 2-4% recoverable strain, a potentially significant result for load bearing implants. To minimize the wear induced osteolysis, unitized structures with functionally graded Co-Cr-Mo coating on porous Ti6Al4V were also made using LENS, which showed high hardness with excellent bone cell-materials interactions. Finally, LENS is also being used to fabricate porous, net shape implants with a functional gradation in porosity characteristics.  相似文献   

15.
In orthopedic surgery bony defects remains a challenge. In generally autologous or heterologous bony transplants can be used. Main problem is the limited amount of bone and donor site morbidity. Nowadays excellent implants and scaffolds at low costs are necessary in respect to the financial problems in our health care system and the strong financial limitations in clinical medicine. Recently a biomimetic approach, in which a porous synthetic bone substitute with properties similar to these of trabecular bone has been developed (VITOFOAM?). Aim of our study was to investigate whether cp‐Ti or Ti6Al4V or stainless steel (316L) porous metal implants achieve material properties comparable to bone. Materials and Methods Three cp‐Ti, Ti6Al4V and stainless steel (316L) porous metal specimen each with a pore size of 150 to 600 μm have been tested in respect to determine the Young’s Modulus E (GPa), Compression Strength (MPa) and Porosity (%) under axial compression. Results Young’s Modulus of the cp‐ Ti samples was in the range of 1.2 to 2.8 GPa, for Ti6Al4V 2.3 to 4.1 GPa could be achieved. Compression Strength for cp‐ Ti and Ti6Al4V ranged from 30 to 65 MPa with porosity values ranged from 71 to 80 %. Discussion The highly porous nature of VITOFOAM? combined with the good biocompatibility of cp‐ Ti or Ti6Al4V and the mechanical properties make these materials ideal bone scaffolds. Trabecular bone shows pore sizes of 300–1500 μm, Young’s Modulus of 0.2–2 GPa and Compression Strength from 5–50 MPa. Porosity of spongious bone ranges from 30 to 95 %. These values are comparable to the values achieved with VITOFOAM?. Porous titanium foam with its osteoconductive properties may therefore be an ideal and cheap alternative. Implant costs can be lowered to 50 % for implants e.g. for intercorporal interbody fusion in spinal surgery. Actually further research is done to show the possibility in spinal surgery or loading technologies with Tricalciumphosphat, Hydroxylapatit, Antibiotics or Cytostatics.  相似文献   

16.
The scaffolds for bone tissue engineering should consider the functional requirements such as the external shape of the replacement, porosity for vessel and nutrient conduit, and stiffness in order to avoid stress shielding and to stimulate growth of the new tissue. Layered manufacturing (LM) has shown great promise in fabricating such porous bone scaffold. The present work proposes a biomimetic design and LM of patient- and site-specific controlled porosity scaffolds for optimised mechanical properties for repair and regeneration of bone. Correlation models between porosity and modulus for bone, and known biomaterials processable by LM are used to estimate the site-specific porosity requirements in the scaffold model. A novel method for generating a tool path using space-filling fractal curves eliminates representation difficulties associated with LM of porous objects. A representative study of a hydroxyapatite scaffold for a cortical bone defect site in human femur is presented to illustrate the methodology.  相似文献   

17.
Porous Ti with an average macro-pore size of 200–400 μm and porosity in the range of 10–65% has been manufactured using polymethyl methacrylate (PMMA) powders as spacer particles. The compressive strength and elastic modulus of resultant porous Ti are observed in the range of 32–530 MPa and 0.7–23.3 GPa, respectively. With the increasing of the porosity and macro-pore size, the compressive strength and modulus decrease as described by Gibson–Ashby model. The failure due to cracking (complete fracture) of the struts on porous Ti is controlled primarily by macro-pores. Fractography shows evidence of the brittle cleavage fracture mainly, but containing a few fine shallow dimples and a small amount of transcrystalline fracture of similarly oriented laths. The failure mechanism has been discussed by taking the intrinsic microstructural features into consideration.  相似文献   

18.
《材料科学技术学报》2019,35(7):1284-1297
Porous metal scaffolds play an important role in the orthopedic field, due to their wide applications in prostheses implantation. Some previous studies showed that the scaffolds with trabecular bone structure reconstructed via computed tomography had satisfactory biocompatibility. However, the reverse modeling scaffolds were inflexible for customized design. Therefore, a top-down designing biomimetic bone scaffold with favorable mechanical performances and cytocompatibility is urgently demanded for orthopedic implants. An emerging additive manufacturing technique, selective laser melting, was employed to fabricate the trabecular-like porous Ti-6Al-4 V scaffolds with varying irregularities (0.05-0.5) and porosities (48.83%–74.28%) designed through a novel Voronoi-Tessellation based method. Micro-computed tomography and scanning electron microscopy were used to characterize the scaffolds’ morphology. Quasi-static compression tests were performed to evaluate the scaffolds’ mechanical properties. The MG63 cells culture in vitro experiments, including adhesion, proliferation, and differentiation, were conducted to study the cytocompatibility of scaffolds. Compressive tests of scaffolds revealed an apparent elastic modulus range of 1.93–5.24 GPa and an ultimate strength ranging within 44.9–237.5 MPa, which were influenced by irregularity and porosity, and improved by heat treatment. Furthermore, the in vitro assay suggested that the original surface of the SLM-fabricated scaffolds was favorable for osteoblasts adhesion and migration because of micro scale pores and ravines. The trabecular-like porous scaffolds with full irregularity and higher porosity exhibited enhanced cells proliferation and osteoblast differentiation at earlier time, due to their preferable combination of small and large pores with various shapes. This study suggested that selective laser melting-derived Ti-6Al-4 V scaffold with the trabecular-like porous structure designed through Voronoi-Tessellation method, favorable mechanical performance, and good cytocompatibility was a potential biomaterial for orthopedic implants.  相似文献   

19.
生物医用多孔钛及钛合金激光快速成形研究进展   总被引:1,自引:1,他引:0  
多孔钛及钛合金具有良好的生物相容性和与人骨更匹配的力学性能,是人体理想的替代材料,因此其制备技术及相关性能研究引起了广泛关注。激光快速成形是一项先进的制造技术,在制备生物多孔金属材料时具有独特的优势。介绍了激光快速成形的工作原理和技术特征,根据成形工艺特点简要回顾了4种代表性激光快速成形技术(选择性激光烧结、选择性激光熔化、激光近净成形和激光立体成形)的国内外发展现状,并重点论述了这几种技术在制备生物医用多孔钛及钛合金方面的最新研究进展,最后指出了今后在该领域的主要研究工作。  相似文献   

20.
Porous implants are known to promote cell adhesion and have low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of porous implants. Very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol (NiTi) alloy. In this article, we report high-cycle rotating bending fatigue response of porous NiTi alloys fabricated using Laser Engineered Net Shaping (LENS?). Samples were characterized in terms of monotonic mechanical properties and microstructural features. Rotating bending fatigue results showed that the presence of 10% porosity in NiTi alloys can decrease the actual fatigue failure stress, at 106 cycles, up to 54% and single reversal failure stress by ~ 30%. From fractographic analysis, it is clear that the effect of surface porosity dominates the rotating bending fatigue failure of porous NiTi samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号