首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   25篇
  国内免费   1篇
工业技术   433篇
  2023年   4篇
  2022年   7篇
  2021年   19篇
  2020年   14篇
  2019年   17篇
  2018年   10篇
  2017年   8篇
  2016年   21篇
  2015年   15篇
  2014年   11篇
  2013年   47篇
  2012年   26篇
  2011年   36篇
  2010年   26篇
  2009年   17篇
  2008年   20篇
  2007年   16篇
  2006年   15篇
  2005年   14篇
  2004年   11篇
  2003年   11篇
  2002年   3篇
  2001年   13篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1989年   4篇
  1987年   2篇
  1985年   1篇
  1984年   4篇
  1977年   1篇
  1975年   1篇
排序方式: 共有433条查询结果,搜索用时 62 毫秒
1.
Here, a single‐step, biomimetic approach for the realization of omnidirectional transparent antireflective glass is reported. In particular, it is shown that circularly polarized ultrashort laser pulses produce self‐organized nanopillar structures on fused silica (SiO2). The laser‐induced nanostructures are selectively textured on the glass surface in order to mimic the spatial randomness, pillar‐like morphology, as well as the remarkable antireflection properties found on the wings of the glasswing butterfly, Greta oto, and various Cicada species. The artificial structures exhibit impressive antireflective properties, both in the visible and infrared frequency ranges, which are remarkably stable over time. Accordingly, the laser‐processed glass surfaces show reflectivity smaller than 1% for various angles of incidence in the visible spectrum for s–p linearly polarized configurations. However, in the near‐infrared spectrum, the laser‐textured glass shows higher transmittance compared to the pristine. It is envisaged that the current results will revolutionize the technology of antireflective transparent surfaces and impact numerous applications from glass displays to optoelectronic devices.  相似文献   
2.

Online structure learning approaches, such as those stemming from statistical relational learning, enable the discovery of complex relations in noisy data streams. However, these methods assume the existence of fully-labelled training data, which is unrealistic for most real-world applications. We present a novel approach for completing the supervision of a semi-supervised structure learning task. We incorporate graph-cut minimisation, a technique that derives labels for unlabelled data, based on their distance to their labelled counterparts. In order to adapt graph-cut minimisation to first order logic, we employ a suitable structural distance for measuring the distance between sets of logical atoms. The labelling process is achieved online (single-pass) by means of a caching mechanism and the Hoeffding bound, a statistical tool to approximate globally-optimal decisions from locally-optimal ones. We evaluate our approach on the task of composite event recognition by using a benchmark dataset for human activity recognition, as well as a real dataset for maritime monitoring. The evaluation suggests that our approach can effectively complete the missing labels and eventually, improve the accuracy of the underlying structure learning system.

  相似文献   
3.
4.
In light of stricter emissions regulations and depleting fossil fuel reserves, fuel cell vehicles (FCVs) are one of the leading alternatives for powering future vehicles. An open-cathode, air-cooled proton exchange membrane fuel cell (PEMFC) stack provides a relatively simple electric generation system for a vehicle in terms of system complexity and number of components. The temperature within a PEMFC stack is critical to its level of performance and the electrochemical efficiency. Previously created computational models to study and predict the stack temperature have been limited in their scale and the inaccurate assumption that temperature is uniform throughout. The present work details the creation of a numerical model to study the temperature distribution of an 80-cell Ballard 1020ACS stack by simulating the cooling airflow across the stack. Using computational fluid dynamics, a steady-state airflow simulation was performed using experimental data to form boundary conditions where possible. Additionally, a parametric study was performed to investigate the effect of the distance between the stack and cooling fan on stack performance. Model validation was performed against published results. The temperature distribution across the stack was identical for the central 70% of the cells, with eccentric temperatures observed at the stack extremities, while the difference between coolant and bipolar plate temperatures was approximately 10°C at the cooling channel outlets. The results of the parametric study showed that the fan-stack distance has a negligible effect on stack performance. The assumptions regarding stack temperature uniformity and measurement were challenged. Lastly, the hypothesis regarding the negligible effect of fan-stack distance on stack performance was confirmed.  相似文献   
5.
Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor–stroma crosstalk is instructed by the genetic alterations of the tumor cells—the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor–stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor–host communication within the entire organism so as to promote metastatic tumor cell dissemination.  相似文献   
6.
The trend to global warming is one of the most important problems of our time. This paper reports the findings of self‐management questionnaires, in regard to views held on the issue of climate change by the students of the Department of Forestry and Management of the Environment and Natural Resources of the Democritus University of Thrace.  相似文献   
7.
Modern thermodynamic models incorporate the concept of association (hydrogen bonding) and they can describe very satisfactorily many properties of water containing mixtures. They have not been successful in representing water's anomalous properties and this work provides a possible explanation. We have analyzed and interpreted recent experimental data, molecular simulation results, and two-state theory approaches and compared against the predictions from thermodynamic models. We show that the dominance of the tetrahedral structure implemented in modern thermodynamic models may be the reason for their failure for describing water systems. While this study does not prove the two-state theories for water, it indicates that a high level of tetrahedral structure of water is not in agreement with water's anomalous properties when used in thermodynamic models.  相似文献   
8.
Recycling of milled product particles in continuous fluidised bed spray granulation can lead to sustained oscillations in the particle size distribution. In this contribution, a model‐predictive feedback control scheme is presented that allows for stabilisation of unstable steady‐states. The feedback law is designed based on a population balance model, which describes the temporal evolution of the particle size distribution due to the particulate processes, and is compared with traditional design methods (PI, LQR).  相似文献   
9.
Genome mining is a routine technique in microbes for discovering biosynthetic pathways. In plants, however, genomic information is not commonly used to identify novel biosynthesis genes. Here, we present the genome of the medicinal plant and oxindole monoterpene indole alkaloid (MIA) producer Gelsemium sempervirens (Gelsemiaceae). A gene cluster from Catharanthus roseus, which is utilized at least six enzymatic steps downstream from the last common intermediate shared between the two plant alkaloid types, is found in G. sempervirens, although the corresponding enzymes act on entirely different substrates. This study provides insights into the common genomic context of MIA pathways and is an important milestone in the further elucidation of the Gelsemium oxindole alkaloid pathway.  相似文献   
10.
Fog formation decreases light transmission of optically clear materials. A promising approach to address this problem is to control the wetting properties of the material at extremes states, which requires imparting micro and nano morphology features on the surface. However, such features may affect the optical properties of the surface. In this work, superhydrophobic and superhydrophilic surfaces, with different morphology characteristics ranging from nanoscale to hierarchical micro-nanoscale are fabricated and evaluated in order to investigate which wetting extreme and surface morphology is more suitable to preserve the light-transmitting properties and exhibit antifogging functionalities. The performance of the aforementioned surfaces is compared for the first time in two different testing modes: under intense fog flow and no surface cooling, and under no-flow and surface cooling, which enhances dew condensation on the surfaces. It is demonstrated that superhydrophilic surfaces with nanoscale morphology maintain their optical transmittance under fog flow for more than 20 min. This duration is one of the longest reported in the literature revealing the long-term antifogging functionality of the proposed surfaces. Finally, by tailoring the morphology and the surface wetting properties, an optically switching surface (initially “milky” which becomes “clear”) when exposed to humidity is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号