首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.  相似文献   

2.
Glioblastomas are among the most aggressive tumors, and with low survival rates. They are characterized by the ability to create a highly immunosuppressive tumor microenvironment. Exosomes, small extracellular vesicles (EVs), mediate intercellular communication in the tumor microenvironment by transporting various biomolecules (RNA, DNA, proteins, and lipids), therefore playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Exosomes are found in all body fluids and can cross the blood–brain barrier due to their nanoscale size. Recent studies have highlighted the multiple influences of tumor-derived exosomes on immune cells. Owing to their structural and functional properties, exosomes can be an important instrument for gaining a better molecular understanding of tumors. Furthermore, they qualify not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting aggressive tumor cells, like glioblastomas.  相似文献   

3.
Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.  相似文献   

4.
5.
6.
Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromodeoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 status. Neuroblastoma cells with mutant (p53MUT) or reduced levels of wild-type p53 (p53si-p53) underwent G2-M cell-cycle arrest with rereplication, whereas p53 wild-type (p53WT) cell lines underwent G0-G1 cell-cycle arrest and apoptosis. In orthotopic neuroblastoma models, pevonedistat decreased tumor weight independent of p53 status. Control mice had an average tumor weight of 1.6 mg + 0.8 mg versus 0.5 mg + 0.4 mg (p < 0.05) in mice treated with pevonedistat. The mechanism of action of pevonedistat in neuroblastoma cell lines in vitro appears p53 dependent. However, in vivo studies using mouse neuroblastoma orthotopic models showed a significant decrease in tumor weight following pevonedistat treatment independent of the p53 status. Novel chemotherapy agents, such as the NEDD8-activating enzyme (NAE) inhibitor pevonedistat, deserve further study in the treatment of neuroblastoma.  相似文献   

7.
Recently, the quest for the mythical fountain of youth has produced extensive research programs that aim to extend the healthy lifespan of humans. Despite advances in our understanding of the aging process, the surprisingly extended lifespan and cancer resistance of some animal species remain unexplained. The p53 protein plays a crucial role in tumor suppression, tissue homeostasis, and aging. Long-lived, cancer-free African elephants have 20 copies of the TP53 gene, including 19 retrogenes (38 alleles), which are partially active, whereas humans possess only one copy of TP53 and have an estimated cancer mortality rate of 11–25%. The mechanism through which p53 contributes to the resolution of the Peto’s paradox in Animalia remains vague. Thus, in this work, we took advantage of the available datasets and inspected the p53 amino acid sequence of phylogenetically related organisms that show variations in their lifespans. We discovered new correlations between specific amino acid deviations in p53 and the lifespans across different animal species. We found that species with extended lifespans have certain characteristic amino acid substitutions in the p53 DNA-binding domain that alter its function, as depicted from the Phenotypic Annotation of p53 Mutations, using the PROVEAN tool or SWISS-MODEL workflow. In addition, the loop 2 region of the human p53 DNA-binding domain was identified as the longest region that was associated with longevity. The 3D model revealed variations in the loop 2 structure in long-lived species when compared with human p53. Our findings show a direct association between specific amino acid residues in p53 protein, changes in p53 functionality, and the extended animal lifespan, and further highlight the importance of p53 protein in aging.  相似文献   

8.
The nano-sized membrane enclosed extracellular vesicles (EVs) released by virtually all cell types play an essential role in intercellular communication via delivering bio-molecules, such as nucleic acids, proteins, lipids, and other molecules to recipient cells. By mediating an active and steady-state cell-to-cell communication, EVs contribute to regulating and preserving cellular homeostasis. On the other hand, EVs can also spread pathogen-derived molecules during infections, subverting the host immune responses during infections and thus worsening pathophysiological processes. In recent years, the biological functioning of EVs has become a widespread research field in basic and clinical branches of medical sciences due to their potential role in therapeutic applications for several diseases. This review aims to summarize the main recent findings regarding the implication of EVs shed by human macrophages (MΦ-EVs) and how they can modulate the host immune response to control or increase the damage caused by infectious agents. We will also present the methods used to describe MΦ-EVs, as well as the potential of these EVs as disease diagnostic tools for some human pathogens. We believe that an in-depth understanding of the host–pathogen interactions mediated by MΦ-EVs may trigger the development of innovative therapeutic strategies against infectious diseases.  相似文献   

9.
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.  相似文献   

10.
Ovarian cancer is the most lethal gynecological malignancy, with an alarmingly poor prognosis attributed to late detection and chemoresistance. Initially, most tumors respond to chemotherapy but eventually relapse due to the development of drug resistance. Currently, there are no biological markers that can be used to predict patient response to chemotherapy. However, it is clear that mutations in the tumor suppressor gene TP53, which occur in 96% of serous ovarian tumors, alter the core molecular pathways involved in drug response. One subtype of TP53 mutations, widely termed gain-of-function (GOF) mutations, surprisingly converts this protein from a tumor suppressor to an oncogene. We term the resulting change an oncomorphism. In this review, we discuss particular TP53 mutations, including known oncomorphic properties of the resulting mutant p53 proteins. For example, several different oncomorphic mutations have been reported, but each mutation acts in a distinct manner and has a different effect on tumor progression and chemoresistance. An understanding of the pathological pathways altered by each mutation is necessary in order to design appropriate drug interventions for patients suffering from this deadly disease.  相似文献   

11.
Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell “death” are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21WAF1 tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents.  相似文献   

12.
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived submicron vesicles released under physiological or pathological conditions. EVs mediate the cellular crosstalk, thus contributing to defining the tumor microenvironment, including in epithelial ovarian cancer (EOC). The available literature investigating the role of EVs in EOC has been reviewed following PRISMA guidelines, focusing on the role of EVs in early disease diagnosis, metastatic spread, and the development of chemoresistance in EOC. Data were identified from searches of Medline, Current Contents, PubMed, and from references in relevant articles from 2010 to 1 April 2020. The research yielded 194 results. Of these, a total of 36 papers, 9 reviews, and 27 original types of research were retained and analyzed. The literature findings demonstrate that a panel of EV-derived circulating miRNAs may be useful for early diagnosis of EOC. Furthermore, it appears clear that EVs are involved in mediating two crucial processes for metastatic and chemoresistance development: the epithelial–mesenchymal transition, and tumor escape from the immune system response. Further studies, more focused on in vivo evidence, are urgently needed to clarify the role of EV assessment in the clinical management of EOC patients.  相似文献   

13.
14.
Crocin, a bioactive molecule of saffron, inhibited proliferation of both HCT116 wild-type and HCT116 p53−/− cell lines at a concentration of 10 mM. Flow cytometric analysis of cell cycle distribution revealed that there was an accumulation of HCT116 wild-type cells in G1 (55.9%, 56.1%) compared to the control (30.4%) after 24 and 48 h of crocin treatment, respectively. However, crocin induced only mild G2 arrest in HCT116 p53−/− after 24 h. Crocin induced inefficient autophagy in HCT116 p53−/− cells, where crocin induced the formation of LC3-II, which was combined with a decrease in the protein levels of Beclin 1 and Atg7 and no clear p62 degradation. Autophagosome formation was not detected in HCT116 p53−/− after crocin treatment predicting a nonfunctional autophagosome formation. There was a significant increase of p62 after treating the cells with Bafilomycin A1 (Baf) and crocin compared to crocin exposure alone. Annexin V staining showed that Baf-pretreatment enhanced the induction of apoptosis in HCT116 wild-type cells. Baf-exposed HCT116 p53−/− cells did not, however, show any enhancement of apoptosis induction despite an increase in the DNA damage-sensor accumulation, γH2AX indicating that crocin induced an autophagy-independent classical programmed cell death.  相似文献   

15.
Programmed cell death ligand-1 (PD-L1) overexpressed on cancer cells has emerged as a key inhibitor that maintains the immunosuppressive microenvironment through its interaction with the PD-1 receptor in cancer. Here, we demonstrated that miR-424-5p delivery via extracellular vesicles (EVs) derived from adipose tissue-mesenchymal stromal cells (AT-MSCs) partly promotes proinflammation and enhances antitumor cytotoxicity in vitro and in vivo. Triple negative breast cancer (TNBC) exhibits increased expression of PD-L1, and PD-L1 is positively correlated with the overall survival of patients with TNBC. PD-L1 shows relatively higher expression in MDA-MB-231 (MM231) cells and can be downregulated by miR-424-5p. Furthermore, miR-424-5p transported by EVs can increase the secretion of proinflammatory cytokines, decrease the secretion of anti-inflammatory cytokines and promote the apoptosis of tumor cells. The intratumoral administration of miR-424-5p-EVs significantly slowed tumor growth. In conclusion, these results demonstrate that EVs may serve as a delivery system for novel immunotherapies for TNBC through the miR-424-5p/PD-L1 pathway.  相似文献   

16.
Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide metabolism. We previously reported that intracellular reactive oxygen species (ROS), including superoxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency, induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes associated with increased oxidative molecules in mice. To evaluate the contribution of p53 activation for SOD1 knockout (KO) (Sod1/) mice, we generated SOD1 and p53 KO (double-knockout (DKO)) mice. DKO fibroblasts showed increased cell viability with decreased apoptosis compared with Sod1/ fibroblasts. In vivo experiments revealed that p53 insufficiency was not a great contributor to aging-like tissue changes but accelerated tumorigenesis in Sod1/ mice. Furthermore, p53 loss failed to improve dilated cardiomyopathy or the survival in heart-specific SOD2 conditional KO mice. These data indicated that p53 regulated ROS-mediated apoptotic cell death and tumorigenesis but not ROS-mediated tissue degeneration in SOD-deficient models.  相似文献   

17.
Prostate cancer remains a life-threatening disease among men worldwide. The majority of PCa-related mortality results from metastatic disease that is characterized by metastasis of prostate tumor cells to various distant organs, such as lung, liver, and bone. Bone metastasis is most common in prostate cancer with osteoblastic and osteolytic lesions. The precise mechanisms underlying PCa metastasis are still being delineated. Intercellular communication is a key feature underlying prostate cancer progression and metastasis. There exists local signaling between prostate cancer cells and cells within the primary tumor microenvironment (TME), in addition to long range signaling wherein tumor cells communicate with sites of future metastases to promote the formation of pre-metastatic niches (PMN) to augment the growth of disseminated tumor cells upon metastasis. Over the last decade, exosomes/ extracellular vesicles have been demonstrated to be involved in such signaling. Exosomes are nanosized extracellular vesicles (EVs), between 30 and 150 nm in thickness, that originate and are released from cells after multivesicular bodies (MVB) fuse with the plasma membrane. These vesicles consist of lipid bilayer membrane enclosing a cargo of biomolecules, including proteins, lipids, RNA, and DNA. Exosomes mediate intercellular communication by transferring their cargo to recipient cells to modulate target cellular functions. In this review, we discuss the contribution of exosomes/extracellular vesicles in prostate cancer progression, in pre-metastatic niche establishment, and in organ-specific metastases. In addition, we briefly discuss the clinical significance of exosomes as biomarkers and therapeutic agents.  相似文献   

18.
19.
20.
The virus–host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号