首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
工业技术   16篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2011年   2篇
  2008年   3篇
  2004年   3篇
  2002年   1篇
  1995年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Meteorological changes urge engineering communities to look for sustainable and clean energy technologies to keep the environment safe by reducing CO2 emissions. The structure of these technologies relies on the deep integration of advanced data-driven techniques which can ensure efcient energy generation, transmission, and distribution. After conducting thorough research for more than a decade, the concept of the smart grid (SG) has emerged, and its practice around the world paves the ways for efcient use of reliable energy technology. However, many developing features evoke keen interest and their improvements can be regarded as the next-generation smart grid (NGSG). Also, to deal with the non-linearity and uncertainty, the emergence of data-driven NGSG technology can become a great initiative to reduce the diverse impact of non-linearity. This paper exhibits the conceptual framework of NGSG by enabling some intelligent technical features to ensure its reliable operation, including intelligent control, agent-based energy conversion, edge computing for energy management, internet of things (IoT) enabled inverter, agent-oriented demand side management, etc. Also, a study on the development of data-driven NGSG is discussed to facilitate the use of emerging data-driven techniques (DDTs) for the sustainable operation of the SG. The prospects of DDTs in the NGSG and their adaptation challenges in real-time are also explored in this paper from various points of view including engineering, technology, et al. Finally, the trends of DDTs towards securing sustainable and clean energy evolution from the NGSG technology in order to keep the environment safe is also studied, while some major future issues are highlighted. This paper can ofer extended support for engineers and researchers in the context of data-driven technology and the SG.  相似文献   
2.
3.
Oxidative conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 (V:Ce=1:1) catalyst, with or without steam and limited O2, has been studied at different temperatures (700–850 °C), C3H8/O2 ratio (4.0), H2O/C3H8 ratio (0.5) and space velocity (3000 cm3 g−1 h−1). The propane conversion, selectivity for propylene and net heat of reaction (ΔHr) are strongly influenced by the reaction temperature and presence of steam in the reactant feed. In the presence of steam and limited O2, the process involves a coupling of endothermic thermal cracking and exothermic oxidative conversion reactions of propane which occur simultaneously. Because of the coupling of exothermic and endothermic reactions, the process operates in an energy-efficient and safe manner. The net heat of reaction can be controlled by the reaction temperature and concentration of O2. The process exothermicity is found to be reduced drastically with increasing temperature. Due to the addition of steam in the feed, no coke formation was observed in the process.  相似文献   
4.
5.
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.  相似文献   
6.
小小的半导体不仅蕴含着巨大商机,还将在各个领域改变并改善人们的生活.全球半导体行业在2008年将继续发力"上扬",引爆全球产业大商机.  相似文献   
7.
Cheng G  Shan F  Freyer A  Guo T 《Applied optics》2002,41(24):5148-5154
We report a high-repetition-rate, compact terawatt Ti:sapphire laser system. The oscillator produces an 82-MHz pulse train consisting of broad-bandwidth pulses of 0.5-nJ/pulse energy and of 9-fs pulse duration. The spectrally shaped, lambda/4 regenerative amplifier supports an 80-nm bandwidth. A single 50-Hz repetition-rate pump laser pumps both the regenerative amplifier and a multiple-pass amplifier. The final output from this laser is a 50-Hz pulse train made from pulses of 53 mJ/pulse energy and of 24-fs pulse duration. For generating ultrafast x-ray pulses, 90% of the energy from the final output of a 28-mm-diameter (1/e2) beam is focused onto an ultrafast x-ray wire target. The energy conversion efficiency from optical (800-nm central wavelength) to x-ray (characteristic lines of K(alpha) from Cu at 8 keV) pulses is estimated to be 7 x 10(-5). This laser system can also generate a lower-peak-power, dual-pulse output that can excite, simultaneously and coherently, Raman modes within an adjustable bandwidth (up to 700 cm(-1)) and at a tunable central vibrational frequency. Preliminary results for the generation of dual-pulse output and ultrafast x rays are presented.  相似文献   
8.
Microsystem Technologies - Nowadays, microgrid energy storage system is in great demand in order to compensate the demand-generation mismatch. In this study a new control design strategy is...  相似文献   
9.
Delaminations are a common mode of failure at interfaces between two material layers which have dissimilar elastic constants. There is a well-known oscillatory nature to the singularity in the stress fields at the crack tips in these bimaterial delaminations, which creates a lack of convergence in the modewise energy release rates. This makes constructing fracture criteria somewhat difficult. An approach used to overcome this is to artificially insert a thin, homogeneous, isotropic layer (the interlayer) at the interface. The crack is positioned in the middle of this homogeneous interlayer, thus modifying the original ‘bare’ interface crack problem into a companion ‘interlayer’ crack problem. Individual modes I and II energy release rates are convergent and calculable for the companion problem and can be used in the construction of a fracture criterion or locus. However, the choices of interlayer elastic and geometric properties are not obvious. Moreover, a sound, consistent, and comprehensive methodology does not exist for utilizing interlayers in the construction and application of mixed-mode fracture criteria in interface fracture mechanics. These issues are addressed here. The role of interlayer elastic modulus and thickness is examined in the context of a standard interface fracture test specimen. With the help of a previously published analytical relation that relates the bare interface crack stress intensity factor to the corresponding interlayer crack stress intensity factor, a suitable thickness and elastic modulus are identified for the interlayer in a bimaterial four-point bend test specimen geometry. Interlayer properties are chosen to make the interlayer fracture problem equivalent to the bare interface fracture problem. A suitable mixed-mode phase angle and a form for the fracture criterion for interlayer-based interface fracture are defined. A scheme is outlined for the use of interlayers for predicting interface fracture in bimaterial systems such as laminated composites. Finally, a simple procedure is presented for converting existing bare interface crack fracture loci/criteria into corresponding interlayer crack fracture loci.  相似文献   
10.
We describe the hierarchical structures of mesostructured silicas assembled from electrically neutral and unsymmetrical Gemini surfactants of the type CnH2n+1NH(CH2)mNH2 with n = 10, 12, 14 and m = 3, 4. As expected for Gemini surfactants with an all anti‐chain configuration and a packing parameter near 1.0, lamellar framework structures are formed, regardless of the length of the alkyl chain (n) and the number of carbon atoms (m) linking the two amino group centers. However, different layer curvatures and levels of hierarchical structure are observed depending on the delicate balance between the hydrophilic interactions at the surfactant head group–silica interface and the hydrophobic interactions between the surfactant alkyl groups. For Gemini derivatives with n = 12 or 14 and m = 3 or 4, well‐expressed hierarchical vesicles are formed that are analogous to those assembled previously from Gemini surfactants with m = 2. However, for n = 10, a new coiled slab structure (m = 3) and an onion‐like core–shell structure (m = 4) are formed. In addition, a previously unobserved stripe‐like silica structure is obtained from a C012+2+0 Gemini surfactant in combination with an α,ω‐diamine co‐surfactant. The relative stability of these hierarchical structures depends on the delicate competition between the long‐range elastic forces occurring in the hydrophobic region of the assembled surfactant and the short‐range chemical forces in the hydrophilic moiety. Lamellar silicas with hierarchical vesicular structures, the new coiled slab, and stripe‐like phases promise to be chemically significant morphologies, because they can minimize the framework pore length and provide optimal access to the framework walls under diffusion‐limited conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号