首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
工业技术   11篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2008年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
以三苯基膦改性的铁磁性氧化物担载的钴铑双金属为催化剂,考察了不同极性溶剂对双环戊二烯(DCPD)氢甲酰化反应合成三环癸烷不饱和单醛和三环癸烷二甲醛的影响。结果表明,溶剂的极性对反应速率和目标产物的选择性有较大的影响,三环癸烷不饱和单醛的生成速率随着溶剂极性的增加呈现增加的趋势;三环癸烷二甲醛的反应速率和选择性随着溶剂极性的增加先增加后降低。以极性值为5.4的丙酮作为溶剂时,合成三环癸烷二甲醛最佳,选择性达到了72%。  相似文献   
2.
以具有不同取代基的三苯基膦和亚磷酸酯为配体,铁磁性的钴铑双金属为催化剂,考察双环戊二烯氢甲酰化合成三环癸烷不饱和单醛的反应。结果表明,反应存在一定的诱导期,诱导期越短,反应速率越快;配体上的取代基对反应活性和产物选择性具有显著影响,吸电子取代基催化活性较高,诱导期较短,反应速率较快,但选择性较低。亚磷酸酯配体中以亚磷酸三苯酯效果最好,与三苯基膦相比,转化率和选择性均相对较低。在考察的配体中,三苯基膦作为配体,三环癸烷不饱和单醛选择性最高,达97%。  相似文献   
3.
采用浸渍法制备了SiO2低负载量的铑催化剂Rh/SiO2。研究以三苯基膦为配体的Rh/SiO2催化剂对双环戊二烯氢甲酰化合成三环癸烷不饱和单醛的催化性能及其影响因素。结果表明,Rh/SiO2催化剂对双环戊二烯氢甲酰化具有良好的催化作用,双环戊二烯合成三环癸烷不饱和单醛选择性超过99%。双环戊二烯氢甲酰化过程与催化剂用量、三苯基膦浓度、反应压力和反应温度有关。反应过程中存在一定诱导期,随着压力增加,诱导期逐渐缩短;增加催化剂用量和三苯基膦浓度有利于提高双环戊二烯转化率和三环癸烷不饱和单醛收率;升高温度虽然有利于双环戊二烯转化,却降低了三环癸烷不饱和单醛选择性。当催化剂与双环戊二烯质量比为1∶25、三苯基膦浓度10.0 g·L-1、负载铑质量分数1‰、反应温度110 ℃、反应压力3.0 MPa和反应时间240 min时,双环戊二烯转化率超过99%,三环癸烷不饱和单醛选择性超过99%。  相似文献   
4.
研究了以甲醇和甲醛为原料,大孔径阳离子交换树脂为催化剂,通过将萃取精馏和催化精馏相耦合的方法制备高纯度甲缩醛,证明了这种工艺的可行性。在内径为35 mm、高为2700 mm的玻璃反应精馏塔内进行实验,考察了总进料量、萃取剂进料位置、醇醛摩尔比、回流比以及用甲醛溶液作为萃取剂对甲醛转化率和甲缩醛纯度的影响。在选定的实验条件下,甲醛的转化率可达到97.82%以上,甲缩醛纯度可达到97.64%(含甲醛0.79%、水1.41%、甲醇0.20%)。  相似文献   
5.
用氨基甲酸丁(BC)代替光气作为羰基化试剂,以1,6-己二胺(HDA)为原料、正丁醇为溶剂,在催化剂作用下一步法合成了1,6-己二异氰酸酯的前体1,6-己二氨基甲酸丁酯(BHDC)。考察了催化剂种类和反应条件对 BHDC 合成反应的影响,并指出了反应体系中可能存在的副反应及副产物。实验结果表明,在以硝酸钇为催化剂、催化剂用量为 HDA 质量的5%、n(正丁醇):n(BC):n(HDA)=15:4:1、反应温度180℃的条件下反应5 h,HDA 的转化率接近100%,BHDC 的收率达到85%。用 X射线衍射和 X 射线光电子能谱对硝酸钇催化剂进行了表征,结果显示硝酸钇的晶形、组成、元素化学状态在反应过程中发生了改变,但这些改变没有导致催化剂的活性明显降低。  相似文献   
6.
当前立德树人的成效已成为检验学校一切工作的根本标准。结合高职"精细有机合成技术"课程特点,从提高教师思政素养、开展丰富多样的思政教学模式、深挖课程中思政元素、建立形式多样的课程思政资源库和注重校园隐形课程思政教育等方面对"精细有机合成技术"教学中实施课程思政进行了实践和探析。进一步表明高校进行专业课程思政教育,是落实立德树人理念的有效途径。  相似文献   
7.
采用共沉淀法制备系列铁磁性氧化物负载的钴、铑及钴铑双金属催化剂。研究以三苯基膦改性的Co/Fe3O4、Rh/Fe3O4和Co-Rh/Fe3O4催化剂对双环戊二烯氢甲酰化合成三环癸烷二甲醛的催化性能,并对催化剂进行XRD、FT-IR和TPR等表征。结果表明,Co-Rh/Fe3O4催化剂对双环戊二烯氢甲酰化合成三环癸烷二甲醛具有最高的选择性。双环戊二烯氢甲酰化合成三环癸烷二甲醛的过程与反应压力、催化剂与双环戊二烯的质量比、反应温度和溶剂的种类有关。增加催化剂与双环戊二烯质量比和升高温度及压力有利于双环戊二烯的转化和三环癸烷二甲醛选择性,采用极性相对较小的溶剂有利于三环癸烷二甲醛的形成。催化剂重复使用5次,催化活性几乎不变。 在催化剂与双环戊二烯质量比为2∶15、Rh的负载量为1∶100、反应温度140 ℃、反应压力7 MPa和反应时间5 h条件下,双环戊二烯转化率达99%以上,三环癸烷二甲醛选择性达60%以上,进一步延长反应时间至12 h,三环癸烷二甲醛选择性超过90%。  相似文献   
8.
采用等体积浸渍法制备了二氧化硅担载的低担载量的钯催化剂0.17%PdCl2/SiO2。研究以二苯基-2-吡啶膦(2-PyPPh2)为配体的0.17%PdCl2/SiO2催化剂对乙炔羰基化合成丙烯酸的催化性能及其影响因素。结果表明:0.17%PdCl2/SiO2催化剂对乙炔羰基化具有良好的催化作用。乙炔羰基化合成丙烯酸的过程与催化剂、2-PyPPh2配体和对甲苯磺酸的用量以及反应温度、时间有关。在考察的压力范围(1~4MPa)内,压力对乙炔的转化率和丙烯酸的收率几乎没有影响;增加2-PyPPh2、催化剂、对甲苯磺酸的用量和反应时间,有利于乙炔的转化和丙烯酸收率的提高;反应温度低于50℃,升高温度有利于乙炔的转化和丙烯酸收率的提高,反应温度高于50℃,升高温度导致乙炔的转化和丙烯酸的收率降低。当催化剂/乙炔的质量比为0.0026,2-PyPPh2配体的质量浓度为6mg/L,对甲苯磺酸的质量浓度为10mg/L,反应温度50℃,反应时间2h,反应压力1.1MPa(乙炔分压0.1MPa)时,乙炔的转化率达到88%,丙烯酸的收率达到87%。  相似文献   
9.
以粉体SiO2、颗粒SiO2、粉体Al2O3、颗粒Al2O3、MCM-41担载的0.1%Rh(以质量分数表示,下同)催化剂对双环戊二烯(DCPD)氢甲酰化合成三环癸烷不饱和单醛(MFTD)进行了对比研究,其中颗粒SiO2和粉体Al2O3具有最短的诱导期,仅有3min;以粉体SiO2和粉体Al2O3担载的0.1%Rh为催化剂,可取得高达98.5%三环癸烷不饱和单醛的选择性;因此,较合适的高效合成三环癸烷不饱和单醛的载体为粉体二氧化硅和粉体氧化铝。以粉体SiO2、颗粒SiO2、粉体Al2O3、颗粒Al2O3、MCM-41担载的2%Rh催化剂对双环戊二烯氢甲酰化合成三环癸烷二甲醛(DFTD)进行了对比研究,双环戊二烯的转化率都达到了100%,其中以粉体SiO2和粉体Al2O3担载的2%Rh为催化剂,三环癸烷二甲醛的选择性达到了70%以上;在2h的反应时间内,所有的催化剂催化合成三环癸烷二甲醛的反应进行的都比较快,但是仅有粉体SiO2担载的2%Rh催化剂在后续的反应时间里,展示了相对强劲的催化活性,在12h的反应时间里,三环癸烷二甲醛的选择性可以达到91%,因此,较合适的高效合成三环癸烷二甲醛的载体为粉体SiO2。  相似文献   
10.
以双环戊二烯(DCPD)氢甲酰化反应为探针反应,系统考察了无机氧化物担载的Rh催化剂上引入Co后对性能的影响。实验结果表明:Co的引入不仅可以大幅度的提高DCPD氢甲酰化产物三环癸烷二甲醛(DFTD)的选择性,而且可以加快DFTD的生成速率;相对于Rh催化剂,引入Co之后,DFTD的选择性可以提高20%以上,DFTD的选择性最高可达88.7%。为研究Rh催化剂上引入Co对催化剂活性和目标产物选择性大幅提高的原因,分别对催化剂进行了程序升温还原(TPR)和程序升温脱附(TPD)的表征。TPR的结果显示Co和Rh发生了相互作用,Rh的还原峰明显发生了一定的位移;TPD的结果显示Rh在载体表面的分散性有降低的趋势,表面的Rh活性物种有一定的减少。结合实验数据和表征数据,Rh催化剂上引入Co使催化活性和产物选择性提高的原因可归结为:Co和Rh发生了相互作用;Co的引入虽然造成了表面Rh含量降低,但是形成了高于Rh的活性的新物种,从而导致了催化剂活性和目标产物选择性大幅提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号