首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
工业技术   9篇
  2009年   1篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
PP/弹性体/无机纳米粒子复合材料的研究进展   总被引:1,自引:0,他引:1  
概述了目前PP 弹性体 无机纳米粒子三元复合体系的研究进展情况,包括:基体树脂的选择与改性、弹性体尤其是新型聚烯烃弹性体(POE)的应用、无机纳米粒子对复合体系的影响、增韧增强机理的研究等。  相似文献   
2.
纳米无机粒子改性聚丙烯的研究   总被引:1,自引:0,他引:1  
利用双螺杆挤出机,通过熔融共混工艺制备了聚丙烯(PP)/聚烯烃热塑性弹性体(POE)/无机纳米粒子复合材料。利用扫描电子显微镜(SEM)观察了不同体系的断面形态,并测试了复合材料的力学性能。研究结果表明,对纳米粒子进行表面改性和用适当的共混方法,可以提高复合材料的冲击性能。  相似文献   
3.
采用纳米无机粒子对茂金属聚乙烯(POE)弹性体增韧聚丙烯(PP)二元共混体系进行改性。从而制得PP/POE/无机纳米粒子三元复合材料。分别探讨了纳米高岭土和纳米碳酸钙对复合材料拉伸性能和冲击性能的影响,并考察了不同纳米粉体的增强效果。  相似文献   
4.
聚丙烯/弹性体/纳米高岭土三元复合材料的研究   总被引:10,自引:0,他引:10  
顾圆春  邱桂学  包艳 《塑料工业》2004,32(10):15-17
以新型聚烯烃弹性体POE为增韧剂,以纳米高岭土为增强剂,将传统的弹性体增韧方法和新型的纳米粒子增韧增强手段相结合;采用合金化技术和填充复合工艺,制得高性能的聚丙烯复合材料。研究结果表明,纳米高岭土和弹性体POE对PP增韧具有协同作用,呈现的并不是二者独立增韧作用的简单加和,纳米无机粒子对复合体系PP/POE还有增强作用并大大减缓了因POE的加入而导致复合体系强度的降低。  相似文献   
5.
PP/POE/纳米碳酸钙三元复合材料研究   总被引:2,自引:0,他引:2  
以乙烯-辛烯共聚物(POE)为增韧剂,以纳米CaCO3为增强剂,将传统弹性体增韧方法与新型纳米粒子增韧增强手段相结合,利用双螺杆挤出机,通过熔融共混工艺制备出了共聚聚丙烯(PP)/POE/纳米CaCO3三元复合材料,研究了纳米CaCO3用量对复合材料的流动性和力学性能的影响,还利用扫描电子显微镜(SEM)对复合材料的断面形态进行了研究。结果表明,最佳”(纳米CaCO3)为5%左右,用少量均聚聚丙烯(PPH)代替共聚聚丙烯可改善复合材料的流动性。  相似文献   
6.
对三元复合体系聚丙烯(PP) /聚烯烃弹性体(POE) /纳米CaCO3进行了改性研究,主要探讨了马来酸酐接枝聚丙烯(PP g MAH)、乙烯 醋酸乙烯共聚物(EVA)、均聚聚丙烯(PPH)等聚合物对该复合体系性能的影响。研究结果表明,加入适量的接枝物有利于三元复合材料强度的提高,在特定的配比下,PPH和PP3 (共聚聚丙烯 )可分别作为该复合体系的熔体流动速率调节剂和增韧剂。  相似文献   
7.
利用双螺杆挤出机,通过熔融共混工艺制备了载货车内饰护板改性聚丙烯(PP)专用材料,并对专用料进行了力学性能测试.研究结果表明.以共聚PP为基体树脂、聚烯烃弹性体(POE)为增韧剂、滑石粒为填料制备的载货车内饰护板专用料·其缺口冲击强度达到18.6 kJ/m2,弯曲强度为30.2 MPa.拉伸强度达24.2 MPa,能满足载货车内饰护板类零部件的性能要求.  相似文献   
8.
对三元复合体系聚丙烯(PP)/聚烯烃弹性体(POE)/纳米CaCO3进行了改性研究,主要探讨了马来酸酐接枝聚丙烯(PP-g-MAH)、乙烯一醋酸乙烯共聚物(EVA)、均聚聚丙烯(PPH)等聚合物对该复合体系性能的影响。研究结果表明,加入适量的接枝物有利于三元复合材料强度的提高,在特定的配比下,PPH和PP3(共聚丙烯)可分别作为该复合体系的熔体流动速率调节剂和增韧剂。  相似文献   
9.
以聚烯烃弹性体POE(乙烯辛烯共聚物)为增韧剂,以纳米CaCO3为增强剂,利用双螺杆挤出机,通过熔融共混工艺制备了聚丙烯(PP)/POE/无机纳米粒子复合材料。测试了复合材料的力学性能并利用扫描电子显微镜(SEM)对三元复合材料的断面形态进行了研究。研究结果表明,利用纳米CaCO3对共混物PP/POE进行改性,存在一个最佳用量,一般为5%左右。采取将纳米CaCO3先与POE混合挤出后再与PP进行共混挤出的二步法工艺,复合体系的综合性能较优。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号