首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
工业技术   29篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2013年   2篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1974年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Magnetic Resonance Materials in Physics, Biology and Medicine - Quantitative analysis in MRI is challenging due to variabilities in intensity distributions across patients, acquisitions and...  相似文献   
2.
Opiates remain the most common form of analgesic therapy in the burn patient today. Because of increased opiate requirements, optimal relief of burn pain continues to be a problem for these patients. The purpose of this article is to summarize those alternative pain control methods that appear in the literature. For instance, in minor burns acetominophen continues to be a useful first line analgesic. Non-steroidal anti-inflammatory drugs (NSAID) and benzodiazepine are generally combined with opiates while entonox seems to be used commonly in the adolescent patients to relieve procedural pain. Antidepressants appear to enhance opiate-induced analgesia while anticonvulsants are useful in the treatment of sympathetically maintained pain following burns. Ketamine has been extensively used during burn dressing changes but its psychological side-effects have limited its use. Clonidine, however, has shown promise in reducing pain without causing pruritus or respiratory depression. Other forms such as transcutaneous electrical nerve stimulation (TENS), psychological techniques, topical and systemic local anaesthetics are also useful adjuncts.  相似文献   
3.
Frequent observations of aerosol over land are desirable for aviation, air pollution and health applications. Thus, a method is proposed here to correct surface effects and retrieve aerosol optical depth using visible reflectance measurements from the Geostationary Operational Environmental Satellite (GOES). The surface contribution is determined from temporal compositing of visible imagery, where darker pixels correspond to less atmospheric attenuation and surface reflectance is deduced from the composite using radiative transfer. The method is applied to GOES‐8 imagery over the eastern US. Retrieved surface reflectance is compared with separate retrievals using a priori ground‐based observations of aerosol optical depth. The results suggest that surface reflectances can be determined to within ±0.04. The composite‐derived surface reflectance is further analysed by retrieving aerosol optical depth and validating retrievals with Aerosol Robotic Network (AERONET) observations. This analysis indicates that the retrieved optical depth is least biased, hence the surface reflectance is most accurate, when the composite time period varies seasonally. Aerosol optical depth retrievals from this validation are within ±0.13 of AERONET observations and have a correlation coefficient of 0.72. While aerosol optical depth retrieval noise at low optical depths may be limiting, the retrieval accuracy is adequate for monitoring large outbreaks of aerosol events.  相似文献   
4.
Slag‐based materials including mortars, concretes, Ca‐geopolymers, etc., are known to display a fascinating blue/green color upon hydration. This specific color is of particular concern in applications where visual esthetics are important. Yet only limited studies have been devoted to this phenomenon so far and its origin remains unexplained. It has sometimes been attributed, without any experimental evidence, to the presence of polysulfur species in the slag. To address the origin of this coloration, sulfur K‐edge X‐ray absorption near edge structure (XANES) spectroscopy was used to investigate the evolution of the speciation of sulfur during slag hydration. Three methods of slag activation were considered: thermal, portland cement, and sodium silicate. The impact of the activation method on the sulfur K‐edge XANES spectrum was examined first. Then, a comparison was made between the XANES of blue and white samples or zones with or without the blue color within the same sample. Independently of the activation route, the blue color was found to be unambiguously related to the presence of a prepeak in the corresponding XANES spectrum. This feature was absent for white samples or white zones. The prepeak, which was located at lower energy than the peak corresponding to the most common reduced sulfur species, was attributed to the presence of the trisulfur radical anion S3?. This blue chromophore is known to be at the origin of the deep blue color of the stone lapis lazuli or the ultramarine pigment (derived from lazurite).  相似文献   
5.
6.
OBJECTIVE: To assess a new laparoscopic technique of paravaginal repair, adapted from a classic laparotomy procedure, for genuine stress urinary incontinence. STUDY DESIGN: From January 1992 to July 1997, 28 patients in a consecutive, prospective clinical case study were subjected to laparoscopic paravaginal repair. No concomitant surgery was performed. A clinical diagnosis of genuine stress urinary incontinence was documented by cystometry following a positive cough stress test. When indicated, a multichannel urodynamics study was performed. RESULTS: In 16 patients (57%) of 28, the right pelvic side was affected, and in 43% fascia damage was identified and repaired bilaterally. The average operative time was 2 hours, 45 minutes; average blood loss was 1.2 g hemoglobin. No intraoperative, immediate postoperative, delayed postoperative or anesthesia-associated complications were observed. Patients were discharged from the surgical units in an average of 5 hours, 15 minutes. There was no postoperative hospital readmission. CONCLUSION: Laparoscopic paravaginal repair is simple and safe and has a 93% cure rate. It is an attractive alternative to laparotomy.  相似文献   
7.
Three-dimensional (3D) positron emission tomography (PET) is attractive for [18F]fluoro-DOPA studies, since the sensitivity improvement is maximal for radioactive sources located in central planes, which is usually the case for the human striata. However, the image quantitation in that mode must be assessed because of the nearly threefold increase in scattered coincidences. We report the results of [18F]fluoro-DOPA studies performed on six normal volunteers. Each one was scanned in the 3D and two-dimensional (2D) modes on the same tomograph. The quantitation in the 3D and 2D modes was compared for a Patlak graphical analysis with the occipital counts as the input function (Ki) and a striatooccipital ratio analysis. We find that, in 3D PET, a scatter correction is required to preserve the same quantitation as in 2D PET. When the 3D data sets are corrected for scatter, the quantitation of the [18F]fluoro-DOPA uptake, using the Patlak analysis, is similar in the 2D and 3D acquisition modes. Conversely, analysis of the striatooccipital ratio leads to higher values in 3D PET because of a better in-plane resolution. Finally, using the 3D mode, the dose injected to the subjects can be reduced by a factor greater than 1.5 without any loss in accuracy compared to the 2D mode.  相似文献   
8.
A methodology is proposed to infer the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 absorption A-band (759 to 770 nm). The reflectance ratio is defined as the ratio of the reflectance in a first spectral band, strongly attenuated by O2 absorption, and the reflectance in a second spectral band, minimally attenuated. For a given surface reflectance, simple relations are established between the reflectance ratio and the altitude of an aerosol layer, as a function of atmospheric conditions and the geometry of observation. The expected accuracy for various aerosol loadings and models is first quantified using an accurate, high spectral resolution, radiative transfer model that fully accounts for interactions between scattering and absorption. The method is developed for POLDER and MERIS, satellite sensors with adequate spectral characteristics. The simulations show that the method is only accurate over dark surfaces when aerosol optical thickness at 765 nm is relatively large (> 0.3). In this case, the expected accuracy is on the order of ± 0.5 km or ± 0.2 km for POLDER or MERIS respectively. More accurate estimates are obtained with MERIS, since in this case the spectral reflectance ratio is more sensitive to aerosol altitude. However, a precise spectral calibration is needed for MERIS. The methodology is applied to MERIS and POLDER imagery acquired over marine surfaces. The estimated aerosol altitude is compared with in situ lidar profiles of backscattering coefficient measured during the AOPEX-2004 experiment for MERIS, or obtained with the space-borne lidar CALIOP for POLDER. The retrieved altitudes agree with lidar measurements in a manner consistent with theory. These comparisons demonstrate the potential of the differential absorption methodology for obtaining information on aerosol altitude over dark surfaces.  相似文献   
9.
A methodology is presented for retrieving phytoplankton chlorophyll-a concentration from space. The data to be inverted, namely, vectors of top-of-atmosphere reflectance in the solar spectrum, are treated as explanatory variables conditioned by angular geometry. This approach leads to a continuum of inverse problems, i.e., a collection of similar inverse problems continuously indexed by the angular variables. The resolution of the continuum of inverse problems is studied from the least-squares viewpoint and yields a solution expressed as a function field over the set of permitted values for the angular variables, i.e., a map defined on that set and valued in a subspace of a function space. The function fields of interest, for reasons of approximation theory, are those valued in nested sequences of subspaces, such as ridge function approximation spaces, the union of which is dense. Ridge function fields constructed on synthetic yet realistic data for case I waters handle well situations of both weakly and strongly absorbing aerosols, and they are robust to noise, showing improvement in accuracy compared with classic inversion techniques. The methodology is applied to actual imagery from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS); noise in the data are taken into account. The chlorophyll-a concentration obtained with the function field methodology differs from that obtained by use of the standard SeaWiFS algorithm by 15.7% on average. The results empirically validate the underlying hypothesis that the inversion is solved in a least-squares sense. They also show that large levels of noise can be managed if the noise distribution is known or estimated.  相似文献   
10.
Elasticity imaging is based on the measurements of local tissue deformation. The approach to ultrasound elasticity imaging presented in this paper relies on the estimation of dense displacement fields by a coarse-to-fine minimization of an energy function that combines constraints of conservation of echo amplitude and displacement field continuity. The multiscale optimization scheme presents several characteristics aimed at improving and accelerating the convergence of the minimization process. This includes the nonregularized initialization at the coarsest resolution and the use of adaptive configuration spaces. Parameters of the energy model and optimization were adjusted using data obtained from a tissue-like phantom material. Elasticity images from normal in vivo breast tissue were subsequently obtained with these parameters. Introducing a smoothness constraint into motion field estimation helped solve ambiguities due to incoherent motion, leading to elastograms less degraded by decorrelation noise than the ones obtained from correlation-based techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号