首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   2篇
自然科学   3篇
  2021年   2篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
该文采用原子层沉积在Si/SiO2/TiN基底上制备了20 nm Hf0.5Zr0.5O2 (HZO)薄膜,并分别以TiN和Cu为盖层构筑了HZO铁电电容器掠入射X射线衍射测试表明,TiN和Cu作为盖层的HZO薄膜都具有明显的正交相系统比较研究了Cu和TiN盖层对HZO薄膜的铁电、漏电和可靠性的影响极化 电压测试表明,TiN和Cu为盖层的HZO薄膜在±4 V扫描电压下,剩余极化强度 (2Pr) 值分别为40.4 μC/cm2和21.2 μC/cm2相应的矫顽电压分别为+1.7 V和+2.0 V极化疲劳与保持特性测试表明,在经过2.3×108循环次数后,以TiN和Cu为盖层的HZO薄膜的2Pr值分别衰减了39.7%和45.6%经过1.3×104 s保持测试,TiN和Cu盖层的HZO薄膜的2Pr值从初始34.4 μC/cm2和17.1 μC/cm2分别下降到了22.6 μC/cm2和1.6 μC/cm2上述结果说明,金属盖层是影响HZO铁电性的一个非常重要的因素盖层的功函数、热膨胀系数、界面缺陷和界面介电层都是导致HZO薄膜铁电性差异的可能机制该文工作对于进一步理解HZO铁电性起源和影响机制提供了有意义的借鉴,将有助于发展未来高性能的HZO铁电存储器和负电容晶体管  相似文献   
2.
采用化学气相沉积法,通过在纳米硅表面原位制备碳层而获得具有坚固核壳结构的nano-Si@C锂离子电池负极材料,该材料能有效克服硅负极在充放电过程中出现的体积变化大和电导率低的问题.实验结果表明,nano-Si@C具有优良的电化学性能,首次库伦效率为87.0%,循环100次仍能保持高比容量(1133 mA·h·g-1)和高容量保持率.循环前后的透射电子显微镜(transmission electron microscopy,TEM)结果证明,紧密坚固的核壳结构使nano-Si@C在充放电过程中保持较好的结构稳定性,有利于电极的循环稳定.  相似文献   
3.
采用化学气相沉积法,通过在纳米硅表面原位制备碳层而获得具有坚固核壳结构的nano-Si@C锂离子电池负极材料,该材料能有效克服硅负极在充放电过程中出现的体积变化大和电导率低的问题.实验结果表明,nano-Si@C具有优良的电化学性能,首次库伦效率为87.0%,循环100次仍能保持高比容量(1133 mA·h·g-1)和高容量保持率.循环前后的透射电子显微镜(transmission electron microscopy,TEM)结果证明,紧密坚固的核壳结构使nano-Si@C在充放电过程中保持较好的结构稳定性,有利于电极的循环稳定.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号