首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球科学   10篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2005年   2篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Haryana plain is the drainage divide between the Ganga plain in the east and the Indus plain in the west. Being a part of the Himalayan foreland, its geomorphology, sedimentation processes, and tectonism are broadly controlled by the Himalayan tectonics. Soil and geomorphological mapping in Haryana plain bring out geomorphic features such as paleochannels, various active drainage patterns, and landforms such as old fluvial plains, floodplains, piedmonts, pediments, terminal fans, and eolian plains. Based on the degree of soil development, and Optical stimulated luminescence (OSL) ages, the soil-geomorphic units were grouped into six members (QIMS-I to VI) (Quaternary Indus Morphostratigraphic Sequence) of a morphostratigraphic sequence: QIMS-VI 9.86–5.38 Ka, QIMS-V 5.38–4.45 Ka, QIMS-IV 4.45–3.60 Ka, QIMS-III 3.60–2.91 Ka, QIMS-II <?2.91–1.52 Ka, and QIMS-I <?1.52 Ka. OSL chronology of different geomorphic features suggests six episodes of tectono-geomorphic evolution in the region since 10 Ka. Neotectonic features such as nine faults, two lineaments, and five fault-bounded tectonic blocks have been identified. Independent tilting and sagging of the blocks in response to neotectonics have resulted in modification of landforms, depositional processes, and hydro-geomorphology of the region. Major rivers like the Yamuna, the Ghaggar, and the Sutlej show different episodes of shifting of their courses. Lineament controlled few extinct channels have been recorded between 20 and 25 m depth below the surface in the ground-penetrating radar (GPR) profiles. These buried channels are aligned along the paleo-course of the Lost Saraswati River interpreted from the existing literature and hence are considered as the course of the lost river. Seven terminal fans have been formed on the downthrown blocks of the associated faults. The Markanda Terminal Fan, the first of such features described, is indeed a splay terminal fan and was formed by a splay distributary system of the Markanda River. Association of three terminal fans of different ages with the Karnal fault indicates the segment-wise development of the fault from west to east. Also, comparison with other such studies in the Ganga plain to further east suggests that the terminal fans formed by streams with distributary drainage pattern occur only in semiarid regions as in the present area and thus are indicators of semiarid climate/paleoclimate. Though the whole region is tectonically active, the region between the Rohtak fault and Hisar fault is most active at present signified by the concentration of earthquake epicenters.  相似文献   
2.
3.
As no evidence for thrusting has yet been reported from the Indo-Gangetic plain so, the Himalayan Frontal Thrust (HFT) has been considered to be the southern most limit of the Siwaliks to the Indo-Gangetic plain. The present study highlights the thrusting activities between the Gandak and Kosi megafan area in the Middle Gangetic plain. As these thrust sheets are concealed beneath thick sediment cover, direct surficial studies of the discontinuity planes are not possible. Further, the topographic breaks formed by the backward erosion of the uplifted thrust faces resemble normal faults with hanging walls to south. Due to gradual decreasing upliftment and/or erosion from north to south, the area shows a step like topographic appearance. Ground penetrating radar (GPR) studies reveal the concealed thrust planes beneath the sediments and the topographic breaks looking like normal faults are interpreted to be the relief created by backward erosion of the thrust sheets along with the overlying sediments. Out of four GPR profiles taken using 100 MHz antennae, three are across the topographic breaks along which most of the terminal fans are formed and one across the basement fault to study its subsurface nature. Initially GPR failed to strike any subsurface discontinuities at the topographic breaks. However, at certain distance to the south of the topographic breaks, GPR was able to strike the northerly dipping subsurface discontinuity planes. By combining the seismological signatures (distribution of earthquake epicenters) with geomorphology, these discontinuities are identified as thrusts. The GPR profiles show a gradual decrease of dip of the thrust planes from north to south across the area. Hence, by the geomorphology, seismological behavior, topography, orientation and continuity, other topographic breaks can be compared with the proven thrusts. GPR study on the basement fault revealed that the NE–SW trending basement faults are not active in the area. The compression between the South Muzaffarpur fault and the peninsular shield led to the generation of the N–S trending extensional Hathauri–Simariaghat fault with downthrown block towards east. Due to depth penetration limit, the GPR study was confined within 15 m depth. The presence of the discontinuity planes up to the base of the GPR profiles indicate their continuity at least up to the base of Holocene sediments. Although this study brought out the presence of concealed thrusts to the south of the HFT, more detailed work is needed further to study their depth extension, relation to the basement and their implication in Himalayan tectonics in a broad manner. At present, we consider these thrusts to be the splays of the HFT. For confirmation, we propose to carryout detail seismic surveys in future research work.  相似文献   
4.
5.
In India, Jharia Coalfield (JCF) has one of the densest congregations of surface-subsurface coal fires known worldwide. Systematic investigation and quantification of actual scenario of coal fires in JCF is always necessary to plan sustainable mining, industrial growth and environmental remediation on a long term basis. The present approach involves evaluation and mapping of coal fire using ASTER (Advanced Spaceborne Thermal Emission and Reflection) data. Mapping reveals that the area located around western, eastern and south-eastern parts of JCF covering territories of Shatabdi opencast, Barora; Sijua opencast; Godhar colliery; Kusunda; Bokapahari; Kujama and Lodna are under intense fire with cumulative coverage of 6.23 km2. The ASTER derived Land Surface Temperature (LST) of the anomalous areas have been subsequently validated by the field observations, carried out in JCF in February, 2010. The methodology adopted in the present study would provide precise evaluation and monitoring of coal fire in Jharia.  相似文献   
6.
Magnetostratigraphic research, undertaken within the past 15 years in the Siwaliks distributed along 400 km of the Sub-Himalaya in central Nepal, has proved that the sediments possess highly reliable hematite-based primary detrital remanent magnetization suitable to determine depositional chronology. In order to bring out the polarity sequences in a common chronological frame, all available data are newly correlated to the latest global magnetic polarity time scale of Cande and Kent (S.C. Cande, D.V. Kent (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 6093–6095). Chronological data presented are referred, in relation to the diverse lithological nomenclature, to the formations whose ages are not constrained by isotopic or paleontologic ages. The age of the sections dated by magnetostratigraphy ranges between 14 and <2 Ma. Sediment accumulation rates average to 32–50 cm kyr−1. Rock-magnetic parameters, e.g. initial susceptibility and isothermal remanent magnetization ratios, allow correlation with an accuracy of up to a few hundred meters among several kilometers thick adjacent sections. Anisotropy of magnetic susceptibility (AMS) data reveal a well-defined fabric contributed to by paramagnetic (k=10−5 to 3×10−4 SI) as well as ferromagnetic minerals (k=3×10−4 to 10−2 SI). AMS ellipsoids are mainly oblate along with some prolate ones and the degree of anisotropy is mostly low (P′<1.2). The magnetic fabric is of pre-folding origin with tilt-corrected sub-vertical magnetic foliation poles. The magnetic lineations do not show parallelism to the expected paleocurrent directions. Rather, sub-parallelism between the clusters of magnetic lineation and the fold axes/bedding strikes/thrust fronts is observed. A superimposed fabric consisting of a sedimentary-compactional and an overprint induced by a mild deformation process is suggested. The latter process was active during, and subsequent to, the deposition in the compressive tectonic setting of the foreland basin. The magnetic lineations for Tinau Khola and Surai Khola sections cluster around N80°W and N88°W respectively, whereas N27°W trend characterizes the Amiliya-Tui area south of Dang. The peak clusters in lineations are probably orthogonal to the true shortening axes. Their variation along the Sub-Himalaya, together with the fold axes or thrust front trends, may be used for accurate tectonic reconstruction. It is especially important when the orthogonality of the latter to the shortening axes may not hold true in the sectors with imbricate fold-and-thrust structures.  相似文献   
7.
Paleogene sediments of the inner fold belt, Naga hills, have very well preserved ichnofossils. 16 ichnospecies have been documented among 13 ichnogenera such as Arenicolites isp., Chondrites targionii, Cylindrichnus isp., Diplocraterion parallelum, Gyrochorte isp., Ophiomorpha annulata, O. irregulaire, O. nodosa, O. rudis, Palaeophycus tubularis, Planolites beverleyensis, Scolicia palaeobullia, Skolithos linearis, Trypinites weisei, Thalassinoides horizontalis and Zoophycos isp. The ichnofossil assemblages comprise mostly domichnia and fodinichnia benthos of the Skolithos and Cruziana ichnofacies. A shallow marine nearshore to offshore marine environment with fluctuating energy condition has been envisaged.  相似文献   
8.
Pitambar  Gautam  Ulrich  Blaha  Erwin  Appel 《Island Arc》2005,14(4):424-435
Abstract Soil profiles of the Kathmandu urban area exhibit significant variations in magnetic susceptibility (χ) and saturation isothermal remanence (SIRM), which can be used to discriminate environmental pollution. Magnetic susceptibility can be used to delineate soil intervals by depth into normal (< 10?7 m3/kg), moderately enhanced (10?7–< 10?6 m3/kg) and highly enhanced (≥ 10?6 m3/kg). Soils far from roads and industrial sites commonly fall into the ‘normal’ category. Close to a road corridor, soils at depths of several centimeters have the highest χ, which remains high within the upper 20 cm interval, and decreases with depth through ‘moderately magnetic’ to ‘normal’ at approximately 30–40 cm. Soils in the upper parts of profiles in urban recreational parks have moderate χ. Soil SIRM has three components of distinct median acquisition fields (B1/2): soft (30–50 mT, magnetite‐like phase), intermediate (120–180 mT, probably maghemite or soft coercivity hematite) and hard (550–600 mT, hematite). Close to the daylight surface, SIRM is dominated by a soft component, implying that urban pollution results in enrichment by a magnetite‐like phase. Atomic absorption spectrometry of soils from several profiles for heavy metals reveals remarkable variability (ratio of maximum to minimum contents) of Cu (16.3), Zn (14.8) and Pb (9.3). At Rani Pokhari, several metals are well correlated with χ, as shown by a linear relationship between the logarithmic values. At Ratna Park, however, both χ and SIRM show significant positive correlation with Zn, Pb and Cu, but poor and even negative correlation with Fe (Mn), Cr, Ni and Co. Such differences result from a variety of geogenic, pedogenic, biogenic and man‐made factors, which vary in time and space. Nevertheless, for soil profiles affected by pollution (basically traffic‐related), χ exhibits a significant linear relationship with a pollution index based on the contents of some urban elements (Cu, Pb, Zn), and therefore it serves as an effective parameter for quantifying the urban pollution.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号