首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
地球科学   8篇
  2020年   3篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有8条查询结果,搜索用时 78 毫秒
1
1.
Nutrient loadings in many river catchments continue to increase due to rapid expansion of agriculture, urban and industrial development, and population growth. Nutrient enrichment of water bodies has intensified eutrophication which degrades water quality and ecosystem health. In this study, we carried out a trend analysis of total phosphorus and total nitrogen loads in the South Saskatchewan River (SSR) catchment using a novel approach to analyse nutrient time series. Seasonal analysis of trends at each of the water quality stations was performed to determine the relationships between annual flow regimes and nutrient loads in the catchment, in particular, the influence of the high spring runoff on nutrient export. Decadal analysis was also performed to determine the long-term relationships of nutrients with anthropogenic changes in the catchment. Although it was found that seasonal and historical variability of nutrient load trends is mainly determined by streamflow regime changes, there is evidence that increases in nitrogen concentration can also be attributed to anthropogenic changes.  相似文献   
2.
Calcium hydroxyapatite and calcite precipitates around bacteria were observed in 2-week-old alluvial topsoil (Roussillon area, SE France). This observation prompted a laboratory study of Ca2+ and PO43− incorporation into hydroxyapatite and Ca2+ into calcite mediated by bacteria using similar topsoil material, but free from apatite and calcite. Subsamples were prepared using three different grain sizes, and experiments were undertaken using sucrose and different contents of Ca2+ and PO43−. Mineralization experiments proceeded over 5 days. Calcium and PO43− sorption onto clay influenced the Ca/P ratio in the solutions. Hydroxyapatite and calcite precipitation only occurred in unsterilized samples. The presence of clay minerals promoted biomineralization.  相似文献   
3.
In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m2/a ($/m2/a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
ABSTRACT

In cold region environments, any alteration in the hydro-climatic regime can have profound impacts on river ice processes. This paper studies the implications of hydro-climatic trends on river ice processes, particularly on the freeze-up and ice-cover breakup along the Athabasca River in Fort McMurray in western Canada, which is an area very prone to ice-jam flooding. Using a stochastic approach in a one-dimensional hydrodynamic river ice model, a relationship between overbank flow and breakup discharge is established. Furthermore, the likelihood of ice-jam flooding in the future (2041–2070 period) is assessed by forcing a hydrological model with meteorological inputs from the Canadian regional climate model driven by two atmospheric–ocean general circulation climate models. Our results show that the probability of ice-jam flooding for the town of Fort McMurray in the future will be lower, but extreme ice-jam flood events are still probable.  相似文献   
5.
Vertical turbulent diffusivity (Kz), which can be estimated from water temperature, is a key factor in the evolution of water quality in lentic waters. In this study, we analysed the capability of a three-dimensional hydrodynamic model (EFDC) to capture water temperature and vertical diffusivity in Lake Arendsee in the Northern German plain. Of particular interest to us is to evaluate the model performance for capturing the diffusion minimum within the metalimnion and analyse the response of the metalimnetic Kz to meteorological forcing, namely changing wind speed and warming. The comparison confirmed that the calibrated model could reproduce both stratification dynamics and vertical diffusion profiles in the lake. The model was also shown to be able to capture the duration and vertical extent of the metalimnetic diffusion minimum. The scenario results illustrate that, compared to air temperature, wind velocity appeared to be the more influential meteorological variable on the vertical exchange within the metalimnion. While increasing wind velocities mostly affected the minimum values of Kz in the metalimnion and thus led to intensified vertical exchange, the reduction of wind velocity mostly affected the depth of minimal Kz, but not its absolute value.  相似文献   
6.
The surface water runoff (sheet wash) during simulated heavy rainfall of between 25 and 100 mm/h (rainfall durations of between 1 and 6 hours, on plots of between 2.5 and 3.5 m2) on soils of Pliocene and Quaternary sediments and on cherts from Ordovician sediments in nearly-natural environments was dependent on inclination of slope (32%) and on kinetic energy of rainfall (30%). When using vegetation cover as an additional variable for nearly-natural and human influenced environments, the vegetation cover increases R2 from 0.62 to 0.74. The degree of slope controls between 25 and 30% of topsoil characteristics. The results of model simulations were confirmed during natural heavy rainfalls on different field plots. Because simulated rainfalls were based on recorded intensities and durations, results compared with historic records and estimations imply also that specific intensity of between 25 and 100 mm/h and duration of between 1 and 6 hours are not so important, relative to geomorphic-environmental impact, in flash flood generation in a Mediterranean climate area like the Roussillon area (SE-France).On 26 September 1992 the rainfall intensity of a four-hour heavy rainfall event was to a large extent influenced by the topography of the catchment of River Réart/Canterrane (Roussillon, SE-France), increasing with altitude. As an example of the model application: the flash flood of 26/27 September 1992 was simulated. The peak flash-flood flow at the river mouth of River Réart/Canterrane was 1100 m3/s or 7 (m3/km2)/s. Runoff conditions for the natural or nearly natural catchment would have accounted for 43.6% of this, agricultural impact for 9.1% and building areas and construction sites for 5.5%. A further 41.8% was accounted for by the effects of breaching of stored floodwater. In absence of breaching of stored floodwater, the nearly-natural part of the peak flash-flood flow would have been about 480 m3/s (75%) and the part caused by human influence about 160 m3/s (25%).  相似文献   
7.
ABSTRACT

Traditionally, hydrological models are only calibrated to reproduce streamflow regime without considering other hydrological state variables, such as soil moisture and evapotranspiration. Limited studies have been performed on constraining the model parameters, despite the fact that the presence of a large number of parameters may provide large degree of freedom, resulting in equifinality and poor model performance. In this study, a multi-objective optimization approach is adopted, and both streamflow and soil moisture data are calibrated simultaneously for an experimental study basin in the Saskatchewan Prairies in western Canada. The results of this study show that the multi-objective calibration improves model fidelity compared to the single objective calibration. Moreover, the study demonstrates that single objective calibration performed against only streamflow can fairly mimic the streamflow hydrograph but does not yield realistic estimation of other fluxes such as evapotranspiration and soil moisture (especially in deeper soil layers).  相似文献   
8.
Anthropogenic and climatic-induced changes to flow regimes pose significant risks to river systems. Northern rivers and their deltas are particularly vulnerable due to the disproportionate warming of the Northern Hemisphere compared with the Southern Hemisphere. Of special interest is the Peace–Athabasca Delta (PAD) in western Canada, a productive deltaic lake and wetland ecosystem, which has been recognized as a Ramsar site. Both climate- and regulation-induced changes to the hydrological regime of the Peace River have raised concerns over the delta's ecological health. With the damming of the headwaters, the role of downstream unregulated tributaries has become more important in maintaining, to a certain degree, a natural flow regime, particularly during open-water conditions. However, their flow contributions to the mainstem river under future climatic conditions remain largely uncertain. In this study, we first evaluated the ability of a land-surface hydrological model to simulate hydro-ecological relevant indicators, highlighting the model's strengths and weaknesses. Then, we investigated the streamflow conditions in the Smoky River, the largest unregulated tributary of the Peace River, in the 2071–2100 versus the 1981–2010 periods. Our modelling results revealed significant changes in the hydrological regime of the Smoky River, such as increased discharge in winter (+190%) and spring (+130%) but reduced summer flows (−33%) in the 2071–2100 period compared with the baseline period, which will have implications for the sustainability of the downstream PAD. In particular, the projected reductions in 30-day and 90-day maximum flows in the Smoky River will affect open-water flooding, which is important in maintaining lake levels and connectivity to perimeter delta wetlands in the Peace sector of the PAD. The evaluation of breakup and freeze-up flows for the 2071–2100 period showed mixed implications for the ice-jam flooding, which is essential for recharging high-elevation deltaic basins. Thus, despite projected increase in annual and spring runoff in the 2071–2100 period from the Smoky sub-basin, the sustainability of the PAD still remains uncertain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号