首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distinction between active and legacy sources of nutrients is needed for effective reduction of waterborne nutrient loads and associated eutrophication. This study quantifies main typological differences in nutrient load behaviour versus water discharge for active and legacy sources. This quantitative typology is used for source attribution based on monitoring data for water discharge and concentrations of total nitrogen (TN) and total phosphorous (TP) from 37 catchments draining into the Baltic Sea along the coastline of Sweden over the period 2003–2013. Results indicate dominant legacy source contributions to the monitored loads of TN and TP in most (33 of the total 37) study catchments. Dominant active sources are indicated in 1 catchment for TN, and mixed sources are indicated in 3 catchments for TN, and 4 catchments for TP. The TN and TP concentration contributions are quantified to be overall higher from the legacy than the active sources. Legacy concentrations also correlate well with key indicators of human activity in the catchments, agricultural land share for TN (R2 = 0.65) and population density for TP (R2 = 0.56). Legacy-dominated nutrient concentrations also change more slowly than in catchments with dominant active or mixed sources. Various data-based results and indications converge in indicating legacy source contributions as largely dominant, mainly anthropogenic, and with near-zero average change trends in the present study of catchments draining into the Baltic Sea along the coastline of Sweden, as in other parts of the world. These convergent indications emphasize needs to identify and map the different types of sources in each catchment, and differentiate strategies and measures to target each source type for possible achievement of shorter- and longer-term goals of water quality improvement.  相似文献   

2.
Declining water quality on the south coast of Western Australia has been linked to current agricultural practices. Riparian buffers were identified as a tool available to farmers and catchment managers to achieve water quality improvements. This study compares 10 m wide regenerating grass and Eucalyptus globulus buffer performance. Surface and subsurface water quality were monitored over a 3‐year period. Nutrient and sediment transport were both dominated by subsurface flow, in particular through the B‐horizon, and this may seriously limit the surface‐runoff‐related functions of the riparian buffers. Riparian buffer trapping efficiencies were variable on an event basis and annual basis. The grass buffer reduced total phosphorus, filterable reactive phosphorus, total nitrogen and suspended sediment loads from surface runoff by 50 to 60%. The E. globulus buffer was not as effective, and total load reductions in surface runoff ranged between 10 and 40%. A key difference between the grass and E. globulus buffers was the seasonality of sediment and nutrient transport. Surface runoff, and therefore sediment and nutrient transport, occurred throughout the year in the E. globulus buffer, but only during the winter in the grass buffer. As a consequence of high summer nutrient and sediment concentrations, half the annual loads moving via surface runoff pathways through the E. globulus buffer were transported during intense summer storms. This study demonstrates that grass and E. globulus riparian buffers receiving runoff from pasture under natural rainfall can reduce sediment and nutrient loads from surface runoff. However, in this environment the B‐horizon subsurface flow is the dominant flowpath for nutrient transport through the riparian buffers, and this subsurface flow pathway carries contaminant loads at least three times greater than surface runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
With the Taihu Basin as a study area, using the spatially distributed and mechanism-based SWAT model, preliminary simulations of nutrient transport in the Taihu Basin during the period of 1995-2002 has been carried out. The topography, soil, meteorology and land use with industrial point pollution discharge, the loss of agricultural fertilizers, urban sewerage, and livestock drainages were all considered in the boundary conditions of the simulations. The model was calibrated and validated against water quality monitoring data from 2001 to 2002. The results show that the annual total productions of nitrogen (TN) and phosphorus (TP) into Lake Taihu are 40000t and 2000t respectively. Nutrient from the Huxi Region is a major resource for Lake Taihu. The non-point source (surface source) pollution is the main form of catchment sources of nutrients into Lake Taihu, occupied TN 53% and TP 56% respectively. TN and TP nutrients from industrial point pollution discharge are 30% and 16%, and sewerage in both forms of point source and non-point source are TN 31 % and TP 47%. Both the loss of agricultural fertilizers and livestock drainages from the catchment should be paid more attention as an important nutrient source. The results also show that SWAT is an effective model for the simulation of temporally and spatially nutrient changes and for the assessment of the trends in a catchment scale.  相似文献   

4.
With the Taihu Basin as a study area, using the spatially distributed and mechanism-based SWAT model, preliminary simulations of nutrient transport in the Taihu Basin during the period of 1995:_2002 has been carried out. The topography, soil, meteorology and land use with industrial point pollution discharge, the loss of agricultural fertilizers, urban sewerage, and livestock drainages were all considered in the boundary conditions of the simulations. The model was calibrated and validated against water quality monitoring data from 2001 to 2002. The results show that the annual total productions of nitrogen (TN) and phosphorus (TP) into Lake Taihu are 40000t and 2000t respectively. Nutrient from the Huxi Region is a major resource for Lake Taihu. The non-point source (surface source) pollution is the main form of catchment sources of nutrients into Lake Taihu, occupied TN 53% and TP 56% respectively. TN and TP nutrients from industrial point pollution discharge are 30% and 16%, and sewerage in both forms of point source and non-point source are TN 31% and TP 47%. Both the loss of agricultural fertilizers and livestock drainages from the catchment should be paid more attention as an important nutrient source. The results also show that SWAT is an effective model for the simulation of temporally and spatially nutrient changes and for the assessment of the trends in a catchment scale.  相似文献   

5.
Tropical rivers display profound temporal and spatial heterogeneity in terms of environmental conditions. This aspect needs to be considered when designing a monitoring program for water quality in rivers. Therefore, the physico-chemical composition and the nutrient loading of the Upper Mara River and its two main tributaries, the Amala and Nyangores were monitored. Initial daily, and later a weekly monitoring schedule for 4 months spanning through the wet and dry seasons was adopted. Benthic macro-invertebrates were also collected during the initial sampling to be used as indicators of water quality. The aim of the current study was to investigate the physico-chemical status and biological integrity of the Upper Mara River basin. This was achieved by examining trends in nutrient concentrations and analyzing the structure, diversity and abundance of benthic macro-invertebrates in relation to varying land use patterns. Sampling sites were selected based on catchment land use and the level of human disturbance, and using historical records of previous water quality studies. River water pH, dissolved oxygen, electrical conductivity (EC), temperature, and turbidity were determined in situ. All investigated parameters except iron and manganese had concentration values within allowable limits according to Kenyan and international standards for drinking water. The Amala tributary is more mineralized and also shows higher levels of pH and EC than water from the Nyangores tributary. The latter, however, has a higher variability in both the total phosphorus (TP) and total nitrogen (TN) concentrations. The variability in TP and TN concentrations increases downstream for both tributaries and is more pronounced for TN than for TP. Macro-invertebrate assemblages responded to the changes in land use and water quality in terms of community composition and diversity. The study recommends detailed continuous monitoring of the water quality at shorter time intervals and to identify key macro-invertebrate taxa that can be used to monitor changes of the water quality in rivers of the Mara basin as a result of anthropogenic changes.  相似文献   

6.
A decline in the ecosystem health of Australia's Moreton Bay, a Ramsar wetland of international significance, has been attributed to sediments and nutrients derived from catchment sources. To address this decline the regional management plan has set the target of reducing the loads by 50%. Reforestation of the channel network has been proposed as the means to achieve this reduction, but the extent of revegetation required is uncertain. Here we test the hypothesis that sediment and nutrient loads from catchments decrease proportionally with the increasing proportion of the stream length draining remnant vegetation. As part of a routine regional water quality monitoring program sediment and nutrient loads were measured in 186 flow events across 22 sub‐catchments with different proportions of remnant woodland. Using multiple linear regression analysis we develop a predictive model for pollutant loads. Of the attributes examined a combination of runoff and the proportion of the stream length draining remnant vegetation was the best predictor. The sediment yield per unit area from a catchment containing no remnant vegetation is predicted to be between 50 and 200 times that of a fully vegetated channel network; total phosphorus between 25 and 60 times; total nitrogen between 1.6 and 4.1 times. There are ~48 000 km of streams in the region of which 32% drain areas of remnant vegetation. Of these 17 095 km are above the region's water storage dams. We estimate that decreasing the sediment and phosphorus loads to Moreton Bay by 50% would involve rehabilitating ~6350 km of the channel network below the dams; halving the total nitrogen load would require almost complete restoration of the channel network. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
邹锐  吴桢  赵磊  陈异晖  余艳红  刘永 《湖泊科学》2017,29(4):819-826
湖泊氮、磷通量是表征湖泊营养状态的重要指标,也是探究湖泊富营养化机制的重要途径.通过氮、磷通量的计算和质量平衡关系的分析,可以识别出在湖泊富营养化过程中起关键作用的过程.以三维水动力-水质模型为计算平台,模拟湖泊水动力、水质的动态过程,并以模拟结果为基础核算湖泊氮、磷循环通量及其在氮、磷循环整体中的贡献,识别湖泊氮、磷循环关键源汇过程的变化规律.滇池是我国富营养化湖泊的代表,同时其半封闭特性为营养物质循环提供了更为稳定的环境,以滇池为案例,基于前期校正和验证过的滇池水动力-水质模型来分析循环通量计算方法的适用性.结果发现,研究年度内滇池外海总氮的年总输入量(包括外源和内源)为7620.92 t,总输出量(包括出流、反硝化和沉降)为7637.31 t;总磷的年总输入量为(包括外源和内源)450.23 t,总输出量(包括出流和沉降)为429.57 t,其中陆域输入是最主要的氮、磷输入途径,而反硝化和沉降则是主要的输出过程.相较于传统的质量平衡方法,通过三维模型计算所得的营养盐通量平衡结果能更好地揭示湖体内所发生的氮、磷转化过程.  相似文献   

8.
China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore the influence of urbanization on river ecosystems based on nutrient concentration and nitrate isotopes. The results show monthly variability of water chemistry and nutrient concentration. Nutrient concentration in two tributaries and the mainstem showed significant spatial variability, with heavy N and P pollution in one tributary near a suburban area,indicating a response to different levels of urbanization.Measurements of nitrate dual isotopes suggest thatvolatilization, assimilation, nitrification, and denitrification all occur in the polluted river. Water chemistry and nitrate isotopes show that major nitrogen sources included domestic waste and agricultural input, such as chemical fertilizer and manure. The results suggest that urbanization increases nutrient concentrations and accelerates the riverine nitrogen dynamic, and point to the need to manage point sources of sewage effluents to improve the water quality of urban rivers in southwestern China.  相似文献   

9.
The Axios River (Axios R.) receives substantial loads of nutrients, heavy metals and other compounds, resulting from anthropogenic activities within its catchment. Long-term trends in nutrients were assessed. Dissolved and particulate fluxes of nutrients and selected metals to the Thermaikos Gulf were calculated and finally, data evaluation with water and sediment quality criteria was performed. Dissolved nutrient concentrations exhibited intra-annual variations related to the agricultural practices of the drainage area with elevated autumn–winter NO3 concentrations (related to fertilizers applied early spring) and high levels of total phosphorous in the summer attributed to point source pollution. Long-term inter-annual variability showed a 2.5-fold increase in nitrate concentration, coupled with a 3-fold decrease in water discharge. Elevated concentrations of dissolved Pb and As have been observed in the Axios R., and freshwater quality criteria for Pb were exceeded. Stream sediments exhibited high contents for Zn, Cr, Pb, and As, mainly originating in tailings and industrial effluents. On the other hand, a considerable portion of the heavy metals is derived from the weathering of ultra-mafic ophiolite complexes. Similar patterns were observed in the Thermaikos Gulf sediment chemistry; the geochemical signatures of the Axios and Aliakmon Rivers (Aliakmon R.), in respect to their contribution in heavy metals, were identified, as well as the impact of the Thessaloniki city. Quality criteria for both river and marine sediments were violated for As and Cr. Overall, the water and sediment quality of the Axios R. and the Thermaikos Gulf have been impacted by anthropogenic activities in the hinterland. The coastal waters and sediments do not appear to pose any threat to human health and aquatic life, however, the need for regular monitoring is highly recommended.  相似文献   

10.
The relative contribution of forest roads to total catchment exports of suspended sediment, phosphorus, and nitrogen was estimated for a 13 451 ha forested catchment in southeastern Australia. Instrumentation was installed for 1 year to quantify total in‐stream exports of suspended sediment, phosphorus, and nitrogen. In addition, a total of 101 road–stream crossings were mapped and characterized in detail within the catchment to identify the properties of the road section where the road network and the stream network intersect. Sediment and nutrient generation rates from different forest road types within the catchment were quantified using permanent instrumentation and rainfall simulation. Sediment and nutrient generation rates, mapped stream crossing information, traffic data and annual rainfall data were used to estimate annual loads of sediment, phosphorus, and nitrogen from each stream crossing in the catchment. The annual sum of these loads was compared with the measured total catchment exports to estimate the proportional contribution of loads from roads within the catchment. The results indicated that 3·15 ha of near‐stream unsealed road surface with an average slope of 8·4% delivered an estimated 50 t of the 1142 t of total suspended sediment exported from the catchment, or about 4·4% of the total sediment load from the forest. Stream discharge over this period was 69 573 Ml. The unsealed road network delivered an estimated maximum of 22 kg of the 1244 kg of total phosphorus from the catchment, or less than 1·8% of the total load from the forest. The average sediment and phosphorous load per crossing was estimated at 0·5 t (standard deviation 1·0 t) and 0·22 kg (standard deviation 0·30 kg) respectively. The lower proportional contribution of total phosphorus resulted from a low ratio of total phosphorus to total suspended sediment for the road‐derived sediment. The unsealed road network delivered approximately 33 kg of the 20 163 kg of total nitrogen, about 0·16% of the total load of nitrogen from the forest. The data indicate that, in this catchment, improvement of stream crossings would yield only small benefits in terms of net catchment exports of total suspended sediment and total phosphorus, and no benefit in terms of total nitrogen. These results are for a catchment with minimal road‐related mass movement, and extrapolation of these findings to the broader forested estate requires further research. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Nutrient and suspended sediment concentrations were measured in the dry season and during the rising and falling stages of flood events in the Annan and Daintree rivers to estimate catchment exports. These flood events were also sampled along the salinity gradient in the estuary and nearshore shelf to quantify the modification of terrestrial sediment and nutrient loads as they pass through estuaries into the Great Barrier Reef lagoon. In the Daintree River TSS concentrations were found to increase between the catchment and the estuary plume. The source of TSS may have been scour of the estuarine channel or from land use in the catchment of the lower estuary. In the dry season nitrogen enters the Annan and Daintree estuaries predominantly in the form of PON and DON in roughly equal proportions. Nitrogen exports to the GBR are mostly in the form of DON. In the wet season the majority of nitrogen enters the estuaries as DON and leaves as PON. Nitrogen removal in the estuaries and plumes appears to be biologically mediated once suspended sediment concentrations decrease to a point where phytoplankton growth is not light limited. In the dry season phosphorus enters and leaves the estuaries primarily in organic form. PIP is the dominant form of phosphorus in river water, but leaves the estuary more evenly distributed between all forms. These estuarine processes result in less nitrogen and phosphorus being delivered to the GBR lagoon than is exported from the catchment. The differences between these estuaries highlights the need for further work to explore modifications in estuaries that drain into the Great Barrier Reef lagoon.  相似文献   

13.
Abstract

Human activities have created high nutrient surpluses in agricultural lands due to the increasing rate of chemical fertilizer application and the increase in livestock production. To analyse the nutrient characteristics and estimate the nutrient load in streams, we conducted extensive field survey and water quality experiments from 2007 to 2008 in Koise River, a major river of the Lake Kasumigaura watershed, Japan. Water quality indicators of total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) were investigated. The nutrient loads of TN, TP and TOC, as well as dissolved total nitrogen, dissolved inorganic nitrogen, dissolved organic nitrogen, particle organic nitrogen, dissolved total phosphorus, dissolved organic carbon and particle organic carbon were also estimated for the Koise River. Seasonal variation of the nutrient concentration from 2007 to 2008 was analysed considering the river discharge variation and agricultural activities. The results showed that the irrigation water from Lake Kasumigaura has the potential ability to decrease the TN concentration and increase the TOC concentration in the Koise River. Significant correlation coefficients between nutrient load and river discharge were found. The monthly pollution loads from different sources were then evaluated based on land cover classification generated from high-resolution Quick Bird remote sensing imagery. This study presents a useful interpretation of water quality data sets with a view to obtaining better information about water quality for more effective management of water resources in river basins.

Editor Z.W. Kundzewicz

Citation He, B., Oki, K., Wang, Y., Oki, T., Yamashiki, Y., Takara, K., Miura, S., Imai, A., Komatsu, K. and Kawasaki, N., 2012. Analysis of stream water quality and estimation of nutrient load with the aid of Quick Bird remote sensing imagery. Hydrological Sciences Journal, 57 (5), 850–860.  相似文献   

14.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   

15.
《Marine pollution bulletin》2012,65(12):2708-2719
The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and dissolved reactive silica (DRSi) together with chlorophyll-a, temperature and salinity were analyzed monthly from December 2008 to March 2010 at four zones in Sishili Bay located in the northern Yellow Sea. The nutrient distribution was impacted by seasonal factors (biotic factors, temperature and wet deposition), physical factors (water exchange) and anthropogenic loadings. The seasonal variations of nutrients were mainly determined by the seasonal factors and the spatial distribution of nutrients was mainly related to water exchange. Anthropogenic loadings for DIN, SRP and DRSi were mainly from point sources, but for DON, non-point sources were also important. Nutrient limitation has changed from DIN in 1997 to SRP and DRSi in 2010, and this has resulted in changes in the dominant red tide species from diatom to dinoflagellates.  相似文献   

16.
A Bayesian chemistry-assisted hydrograph separation (BACH) approach was developed, based on calibration of a three-component recursive digital filter, that requires monthly water quality data only. This enables BACH to be applied to the large number of rural catchments for which continuous flow records and monthly water chemistry time series exist from ‘state of environment’ monitoring programmes, but little supplementary data required for more sophisticated analysis techniques. As well as estimating fast, medium, and slow flow components, BACH also estimates for each flow component a time-invariant concentration of the chemical tracers chosen, allowing flow path-specific loads to be calculated. The method was demonstrated using 15 years of total phosphorus (TP) and total nitrogen (TN) data from eight mesoscale catchments in the Waikato region of New Zealand’s North Island. Calibration was done separately for three 5-year data periods, and validated against data from the following 5-year period. Flow path separation and concentration predictions were consistent between data periods, indicating that the TP–TN combination contained sufficient information to reliably identify three flow paths in each catchment; an event-response near-surface flow path with high concentrations of both phosphorus and nitrogen, a seasonal shallow groundwater flow path with lower concentrations of TP but high concentrations of TN, and a deeper slower groundwater flow path characterised by generally low concentrations of both TP and TN. Based on this analysis, the catchments were able to be grouped in three hydro-types. This shows that commonly available water quality data can support robust, objective flow separation and nutrient load apportionment, even in the absence of other supporting data, provided appropriate modelling methods are used.  相似文献   

17.
Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ~750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (~50,000mg/l), horticulture (~3000mg/l), dryland cropping (~2000mg/l), cotton (~600mg/l) and grazing on native pastures (~300mg/l). The highest median TN concentrations are from horticulture (~32,000μg/l), cotton (~6500μg/l), bananas (~2700μg/l), grazing on modified pastures (~2200μg/l) and sugar (~1700μg/l). For TP it is forestry (~5800μg/l), horticulture (~1500μg/l), bananas (~1400μg/l), dryland cropping (~900mg/l) and grazing on modified pastures (~400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed.  相似文献   

18.
氮、磷浓度是制约湖泊营养状态和生产力水平的重要环境因子,而氮磷化学计量比是湖泊生态系统的主要指标,因此,判识氮磷比变化趋势及其驱动力对湖泊生态恢复具有重要意义.研究基于19882018年连续观测数据,分析了滇池氮磷浓度和氮磷摩尔比(简称氮磷比)的时空分布演变特征;采用多元线性回归模型分别对滇池草海和外海氮磷比驱动效应进行定量解析,筛选出影响湖体氮磷比变化的潜在驱动因子.结果表明:①19882018年滇池氮磷比呈现显著的线性上升趋势,其中草海和外海氮磷比分别上升1.3和0.7 a^-1.②草海和外海分别在2008年和2004年发生了氮磷比上升突变,突变前上升归因于总氮浓度快速增加,突变后则是由于总磷浓度下降较快.③滇池的氮磷浓度变化主要是受流域氮磷输入负荷、跨流域调水、流域氮磷削减、风速和水位的综合影响,但受控因子在不同区域可能存在差异.④气温是滇池氮磷比变化的主要驱动因子,流域人为氮磷输入差异是滇池氮磷比变化的次要驱动因子.  相似文献   

19.
Fifty streams, located in southern Ontario, Canada, were visited in September 2008 to investigate the effect of varying land use, land cover, and associated resource inputs on water column bacterial abundance (BACT), production (BP), and extracellular enzyme activity and stoichiometry. Principle components analysis was used to summarize landscape data, producing three components (PCs), which explained 79.2% of the variability in the data. The PCs grouped into the following gradients: (PC1) urban land use and continuous annual cropping to wetland-like cover, (PC2) rotational cropping to forest-like cover, and (PC3) increasing rural and agricultural land uses with increasing watershed size. These landscape gradients created imbalanced resource availability. Nutrient resources were more abundant in streams with more intensive anthropogenic land uses, but carbon availability was primarily controlled by the abundance of natural land covers (wetland and wooded areas). BACT, BP, and enzyme activities were positively related primarily to nutrient availability and/or anthropogenic land use (Stepwise R 2 range: 0.33?C0.73). The ratio of ??-glucosidase to alkaline phosphatase activity approached a 1:1 balance with increasing anthropogenic land use, decreased wetland and forest cover, and increased total dissolved nitrogen. The ratio of leucine-aminopeptidase to alkaline phosphatase activity approached 1:1 with both increased dissolved organic carbon and nitrogen. Moreover, enzyme C:N:P ratios moved closer to 1:1:1 with faster water column bacterial turnover times. These results suggest that water column microbial communities are better able to balance resource availability with growth in streams receiving nutrient subsidies from anthropogenic sources and under these conditions when carbon resources increase.  相似文献   

20.
In Finland a great number of forest lakes are affected by silvicultural practices such as logging. Logging affects water chemistry and thus the ecological state of lakes by causing nutrient loads and increasing erosion and humic substances in water. Water quality assessment requires definition of natural background conditions and ecological status of water bodies. Therefore it is necessary to determine the impact of these practices on aquatic organisms. In the absence of long-term monitoring data, paleolimnological methods provide a powerful tool for determining human-induced changes in lakes. In this study diatom assemblages, diatom-inferred water total phosphorus and total organic carbon, and sediment chemistry were analyzed from the sediments of six lakes with a logged catchment area (11-53%). According to one-way analysis of similarities (ANOSIM) the diatom communities of three lakes were different before, immediately after and more than 10 years after logging and diatom assemblages in remaining three lakes did not show statistically significant differences between these times. However, all changes were minor, and at present the diatom assemblages and diatom-inferred water chemistry of all the lakes are close to the pre-logging conditions. The minor alterations are probably due to the wide protective zones around the lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号