首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   4篇
  国内免费   1篇
工业技术   243篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   14篇
  2013年   9篇
  2012年   8篇
  2011年   7篇
  2010年   6篇
  2009年   14篇
  2008年   8篇
  2007年   4篇
  2006年   14篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   12篇
  2000年   11篇
  1999年   5篇
  1998年   10篇
  1997年   12篇
  1996年   3篇
  1995年   9篇
  1994年   6篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
排序方式: 共有243条查询结果,搜索用时 31 毫秒
1.
Journal of Materials Science - For transformers and inductors to meet the world’s growing demand for electrical power, more efficient soft magnetic materials with high saturation magnetic...  相似文献   
2.
The critical need for high strength, lightweight and high stiffness materials has, in recent years, resurrected much interest in discontinuously reinforced powder metallurgy metal matrix composites. These hybrid materials have combined both standard wrought alloys of aluminium and a wide variety of discontinuous reinforcements such as particulates and whiskers of ceramic materials. Renewed interest in these materials as attractive candidates for use in the aerospace and transportation industry has resulted from an attractive and unique combination of physical and mechanical properties, and an ability to offer near isotropic properties coupled with the low cost of these materials when compared with existing monolithic materials. In this paper, the primary processing categories for discontinuously-reinforced metal-matrix composites are highlighted and the salient features of the various techniques in each category are discussed. The variables involved in each processing technique are examined, and the influence of alloy chemistry highlighted. Novel processing techniques for these materials such as the variable co-deposition method is presented as a means to process these novel engineering materials in order to improve their overall mechanical performance.  相似文献   
3.
From the geometrical standpoint, this article presents a qualitative theoretical analysis and prediction of the transient to steady-state transition during the spray-rolling process, a novel manufacturing technique for aluminum strips. The analytical results indicate that, when the deposited materials at the specific points on one roll surface overlap their counterparts on the other roll surface, spray rolling transits from the transient state to the steady state. The specific points are the limiting deposition positions of the atomized droplets on the roll surface initially.  相似文献   
4.
The present article deals with the processing and microstructural evolution of powder metallurgy (PM) Zn-22Al pct eutectoid alloy. The powder material was produced through inert gas atomization and then cryomilled in liquid nitrogen. The milled powder particles were consolidated by hot isostatic pressing (“hipping”) followed by thermomechanical treatment, resulting in a two-phase microstructure. The microstructures were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The principal processing factors and microstructural characteristics associated with the major processing steps, including spray atomization, mechanical milling (MM), consolidation, and heat treatment, were evaluated and discussed. Hot isostatic pressing and extrusion followed by heat treatment to produce the superplastic structure (Al-rich phase and Zn-rich phase) are effective in elimination porosity. A TEM examination of the microstructure of the alloy after processing reveals the presence of nanodispersion particles that are not uniformly distributed. The formation of the dispersions was attributed to the interaction between the powder material (primarily Al phase) and environmental elements such as oxygen and nitrogen during milling. Moreover, the size and distribution of the dispersions present in the bulk material met the anticipated requirements for serving as inhibitors for grain growth and barriers for dislocation movement. The TEM observations on crept specimens reveal extensive dislocation/dispersion interactions.  相似文献   
5.
The current study aims to provide fundamental insight into the behavior of microstructures containing grain sizes that span multiple length scales. A commercial 5083 Al alloy was selected as the material of interest to facilitate comparison with recently published data. The materials studied here were prepared via the thermal consolidation of powders that were cryomilled for different times (i.e., 0, 2, 4, and 8 hours). Following consolidation, the resultant microstructure was characterized by an equiaxed grain morphology with a size distribution centered around 200∼300 nm. Dispersed among the 200- to 300-nm grains were coarse-grained regions or ligaments with a grain size ranging from 600 nm to 2 μm. The occurrence of coarse-grained regions is rationalized on the basis of recrystallization or subgrain coarsening, whereas the occurrence of equiaxed fine regions is proposed to be a result of continuous grain growth. Two types of microstructures were selected for study, containing coarse-grained volumes of approximately 28 pct and 43 pct that corresponded to an ultimate tensile strength (UTS) of 566 MPa and 535 MPa, and a fracture strain of 3.2 pct and 3.5 pct, respectively. The observed ductility and the relevant toughening mechanisms were discussed in light of the presence of multiple length scales.  相似文献   
6.
Mechanical properties of iron processed by severe plastic deformation   总被引:1,自引:0,他引:1  
In the present study, the mechanical properties of Fe processed via severe plastic deformation (equal-channel angular pressing (ECAP)) at room temperature were investigated for the first time. The grain size of annealed Fe, with an initial grain size of about 200 μm, was reduced drastically during ECAP. After eight passes, the grain size reaches 200 to 400 nm, as documented by means of transmission electron microscopy (TEM). The value of microhardness during pressing increases 3 times over that of the starting material after the first pass and increases slightly during subsequent pressing for higher-purity Fe. Examination of the value of microhardness after eight passes as a function of post-ECAP annealing temperature shows a transition from recovery to recrystallization, an observation that resembles the behavior reported for heavily deformed metals and alloys. The tensile and compression behaviors were examined. In tension, a drop in the engineering stress-engineering strain curve beyond maximum load was observed both in the annealed Fe and the ECAP Fe. This drop is related to the neck deformation. The fracture surface, examined by scanning electron microscopy (SEM), shows vein patterns, which is different from the dimples found on the fracture surface of annealed Fe. In compression, an initial strain-hardening region followed by a no-strain-hardening region was observed in the ECAP Fe. The yield strength in tension of the ECAP Fe was observed to be higher than that in compression. The strengthening mechanisms and softening behavior are discussed.  相似文献   
7.
Thermal stability in bulk ultrafine-grained (UFG) 5083 Al that was processed by gas atomization followed by cryomilling, consolidation, and extrusion, and that exhibited an average grain size of 305 nm, was investigated in the temperature range of 473 to 673 K (0.55 to 0.79 T m , where T m is the melting temperature of the material) for different annealing times. Appreciable grain growth was observed at temperatures > 573 K, whereas there was limited grain growth at temperatures < 573 K even after long annealing times. The values of the grain growth exponent, n, deduced from the grain growth data were higher than the value of 2 predicted from elementary grain growth theories. The discrepancy was attributed to the operation of strong pinning forces on boundaries during the annealing treatment. An examination of the microstructure of the alloy suggests that the origin of the pinning forces is most likely related to the presence of dispersion particles, which are mostly introduced during cryomilling. Two-grain growth regimes were identified: the low-temperature region (<573 K) and the high-temperature region (>573 K). For temperatures lower than 573 K, the activation energy of 25 ± 5 kJ/mol was determined. It is suggested that this low activation energy represents the energy for the reordering of grain boundaries in the UFG material. For temperatures higher than 573 K, an activation energy of 124 ± 5 kJ/mol was measured. This value of activation energy, 124 ± 5 kJ/mol, lies between that for grain boundary diffusion and lattice diffusion in analogous aluminum polycrystalline systems. The results show that the strength and ductility of bulk UFG 5083 Al, as obtained from tensile tests, correlate well with substructural changes introduced in the alloy by the annealing treatment.  相似文献   
8.
On the influence of N on residual microstrain in cryomilled Ni   总被引:1,自引:0,他引:1  
The factors that influence the development of residual microstrain during milling in a liquid nitrogen atmosphere, defined hereafter as cryomilling, are investigated. The residual microstrains in cryomilled Ni, processed under various cryomilling conditions, were examined by X-ray diffraction (XRD) and analyzed through the single line approximation (SLA) method. The average residual microstrains are determined to be in the range of 2×10−3 to 6×10−3. The residual microstrain on the (200) plane is higher than those on the other planes by 33 pct. The residual microstrain and its anisotropy in Ni are reduced after heat treatment at 800 °C for 1 hour. The measured microstrain is proposed to evolve from the presence of N and O as impurity atoms in the Ni lattice. Both N and O are introduced from the environment and then their solubility in Ni is enriched via the generation of defects that occurs during cryomilling. The stable site for N and O atoms in Ni is the octahedral site, and the sizes of N and O atoms exceed those of the octahedral site of Ni by 48 and 16 pct respectively. Accordingly, a lattice strain field is expected around interstitial N atoms that are located at octahedral sites. By comparing the crystal structure around the octahedral site, the stable site for impurity N atoms, in the Ni lattice with that of Ni3N structure, the lattice strains are estimated to be in the range of 5 to 15 pct. The result shows that the (200) plane has strains that are 2 times higher than those in other planes, and this is argued to be the reason for the measured anisotropy of residual strain in Ni after cryomilling.  相似文献   
9.
10.
Spray-atomized Al-7.5Mg-0.3Sc (in wt pct) alloy powders were mechanically milled at a low-energy level and at cryogenic temperature (cryomilling). The low-energy milling effectively generated a nanoscale microstructure of a supersaturated face-centered cubic (fcc) solid solution with an average grain size of ∼26 nm. The nanoscale microstructure was fully characterized and the associated formation mechanisms were investigated. Two distinct nanostructures were identified by transmission electron microscopy (TEM) observations. Most frequently, the structure was comprised of randomly oriented equiaxed grains, typically 10 to 30 nm in diameter. Occasionally, a lamellar structure was observed in which the lamellas were 100 to 200 nm in length and ∼24 nm wide. The morphology of the mixed nanostructures in the cryomilled samples indicated that high-angle grain boundaries (HAGBs) formed by a grain subdivision mechanism, a process similar to which occurs in heavily cold-rolled materials. The microstructural evidence suggests that the subdivision mechanism observed here governs the development of fine-grain microstructures during low-energy milling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号