首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   38篇
  国内免费   125篇
生物科学   657篇
  2023年   7篇
  2022年   8篇
  2021年   10篇
  2020年   17篇
  2019年   16篇
  2018年   18篇
  2017年   19篇
  2016年   20篇
  2015年   13篇
  2014年   21篇
  2013年   20篇
  2012年   29篇
  2011年   28篇
  2010年   8篇
  2009年   25篇
  2008年   18篇
  2007年   36篇
  2006年   29篇
  2005年   21篇
  2004年   24篇
  2003年   19篇
  2002年   25篇
  2001年   22篇
  2000年   14篇
  1999年   13篇
  1998年   16篇
  1997年   17篇
  1996年   19篇
  1995年   17篇
  1994年   12篇
  1993年   9篇
  1992年   15篇
  1991年   10篇
  1990年   16篇
  1989年   12篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有657条查询结果,搜索用时 15 毫秒
91.
Modeling the temperature response of nitrification   总被引:3,自引:2,他引:1  
To model nitrification rates in soils, it is necessary to have equations that accurately describe the effect of environmental variables on nitrification rates. A variety of equations have been used previously to describe the effect of temperature on rates of microbial processes. It is not clear which of these best describes the influence of temperature on nitrification rates in soil. I compared five equations for describing the effects of temperature on nitrification in two soils with very different temperature optima from a California oak woodland-annual grassland. The most appropriate equation depended on the range of temperatures being evaluated. A generalized Poisson density function best described temperature effects on nitrification rates in both soils over the range of 5 to 50 °C; however, the Arrhenius equation best described temperature effects over the narrower range of soil temperatures that normally occurs in the ecosystem (5 to 28 °C). Temperature optima for nitrification in most of the soils were greater than even the highest soil temperatures recorded at the sites. A model accounting for increased maintenance energy requirements at higher temperatures demonstrates how net energy production, rather than the gross energy production from nitrification, is maximized during adaptation by nitrifier populations to soil temperatures.  相似文献   
92.
For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.  相似文献   
93.
Activation energies of suspended and immobilized nitrifying bacteria were determined and compared to determine if diffusion limitation results in decreased sensitivity for temperature. The activation energy for the respiration activity of suspended Nitrosomonas europaea and Nitrobacter agilis was found to be 86.4 and 58.4 kJ mol(-1), respectively. The activation energy for oxygen diffusion in the support material, kappa-carrageenan, determined from the effect of temperature on the effective diffusion coefficient (D), was 17.2 kJ mol(-1). Consequently, the apparent actvation energy of diffusion limited cells should be lower. It was indeed shown that due to the effect of diffusion limitation and to temperature effects on the Monod constant K(s), the immobilized-cell activity was less sensitive to temperature. The apparent activation energy for immobilized Ns. europaea was between 28.6 and 94.2 kJ mol(-1) and for immobilized Nb. agilis between 1.4 and 72.9 kJ mol(-1), depending on the oxygen concentration and temperature. (c) 1995 John Wiley & Sons, Inc.  相似文献   
94.
Two Dutch heathland sites Hoorneboeg (HB) and Ede, dominated by Deschampsia flexuosa and differing in nitrate production, were sampled for an entire growing season. A large number of soil and plant parameters were monitored in an attempt to assess the contribution of nitrate in the N supply and its assimilation by Deschampsia.Average NO3 and NH4 + concentrations (mg kg–1) in the top 10-cm depth were 0.03 and 2.2, respectively, for HB, and 2.1 and 6.7, respectively, for Ede. Laboratory incubations of intact cores and experiments with FH-layer suspensions showed significantly higher mineralization and nitrification rates for the Ede site during most of the season. Nitrification was largely controlled by the rate of net N-mineralization, which in turn was highly affected by soil moisture. Nitrate production was virtually zero at HB and accounted for 25% of the net N-mineralization at Ede.Shoot chemical composition showed no essential differences for the two sites, but mean in vivo (current) foliar NRA was almost 2-fold higher at Ede than at HB, indicating some utilization of nitrate at the former location. At the HB site with essentially no nitrate production, however, enzyme activities were clearly higher than basal constitutive levels in NH4 +-fed plants. Apparently, shoot NRA at the HB site became positively affected by factors other than nitrate availability and/or showed disproportional increases in response to atmospheric nitrate inputs. Root NRA displayed the same low basal level at the two sites. Nitrate fertilization (100 kg N ha–1) yielded maximally induced foliar NRAs similar to levels found in hydroponic nitrate plants. Although no accumulation of free NO3 was observed in shoots from fertilized plots, increases in foliar concentrations of both organic N and carboxylates clearly indicated nitrate assimilation. Root NRA showed no response to nitrate addition.It is concluded that current NRA measurements in Deschampsia at heathland sites are of limited value only, especially when interpreted in isolation. A combined approach, using concurrently conducted soil and plant analyses, will allow the extent of nitrate utilization in the field to be best characterized.Publication 2013 of the Netherlands Institute of Ecology.FAX no corresponding author: +31 8306 23227  相似文献   
95.
Flooding can be an important control of nitrogen (N) biogeochemistry in wetland ecosystems. In North American prairie marshes, spring flooding is a dominant feature of the physical environment that increases emergent plant production and could influence N cycling. I investigated how spring flooding affects N availability and plant N utilization in whitetop (Scolochloa festucacea) marshes in Manitoba, Canada by comparing experimentally spring-flooded marsh inside an impoundment with adjacent nonflooded marsh. The spring-flooded marsh had net N mineralization rates up to 4 times greater than nonflooded marsh. Total growing season net N mineralization was 124 kg N ha–1 in the spring-flooded marsh compared with 62 kg N ha–1 in the nonflooded marsh. Summer water level drawdown in the spring-flooded marsh decreased net N mineralization rates. Net nitrification rates increased in the nonflooded marsh following a lowering of the water table during mid summer. Growing season net nitrification was 33 kg N ha–1 in the nonflooded marsh but < 1 kg N ha–1 in the spring-flooded marsh. Added NO3 –1 induced nitrate reductase (NRA) activity in whitetop grown in pot culture. Field-collected plants showed higher NRA in the nonflooded marsh. Nitrate comprised 40% of total plant N uptake in the nonflooded marsh but <1% of total N uptake in the spring-flooded marsh. Higher plant N demand caused by higher whitetop production in the spring-flooded marsh approximately balanced greater net N mineralization. A close association between the presence of spring flooding and net N mineralization and net nitrification rates indicated that modifications to prairie marshes that change the pattern of spring inundation will lead to rapid and significant changes in marsh N cycling patterns.  相似文献   
96.
97.
The effect of heating and autoclaving on extractable nitrogen, N mineralisation and C metabolism was studied by heating five forest soils in the laboratory, simulating the range of effects of heat due to bushfire. Top soil (0–5 cm) was heated to 60 °C, 120 °C and 250 °C for 30 minutes; unheated soil was taken as a control. Samples of the soil heated to 250 °C were also inoculated with fresh soil to accelerate the recovery of the microbial population. Soil autoclaving was carried out as another heat treatment (moist heat). Soils were analysed immediately after heating and 3 times during seven months of incubation to assess immediate and longer-term effects of heating.Extractable N (organic and mineral forms) increased after heating to 120 °C, but decreased with further heating to 250 °C suggesting the volatilisation of N. N associated with microbial biomass diminished with heating and was barely detectable after the 250 °C treatment. Microbial biomass was an important source of soluble N in heated soils, and only partly recovered during subsequent long incubation. The amount of N mineralised during incubation depended on both soil and temperature. Nitrification did not occur when soils were heated to 250 °C (with or without inoculum), or after autoclaving, demonstrating the high sensitivity of nitrifiers to heat. At the beginning of soil incubation, respiration was enhanced in heated soils (250 °C, 250 °C inoculated) and autoclaved soils, but after 30 days of incubation respiration decreased to values either similar to or lower than those in control. This respiration pattern indicated that a fraction of labile C was released by heating, which was quickly mineralised within 30 days of incubation. These results demonstrate some effects of soil heating on C and N dynamics in forest soils.  相似文献   
98.
Ammonium sulphate was applied at the rate of 300 kg N ha–1 with or without the nitrification inhibitor 1-carbamoyl-3(5)-methylpyrazol (4 kg ha–1) to plots measuring 1.5 × 1.5 m. The fertilizer and the inhibitor were washed into the top 15-cm layer of the soil, which was highly calcareous (55% CaCO3), and the plots were kept bare. The process of nitrification was monitored by regular soil sampling. In the absence of the inhibitor, nitrification was completed in three weeks. In the presence of the inhibitor only 10% of applied N was nitrified by the end of the third week and 42% by the end of the eighth week. Average soil temperature at 5–, 10– and 20-cm depth over the first six weeks was 26.0, 24.8 and 24.2°C, respectively.  相似文献   
99.
Net N mineralization rates were measured in heathlands still dominated by ericaceous dwarf shrubs (Calluna vulgaris or Erica tetralix) and in heathlands that have become dominated by grasses (Molinia caerulea or Deschampsia flexuosa). Net N mineralization was measuredin situ by sequential soil incubations during the year. In the wet area (gravimetric soil moisture content 74–130%), the net N mineralization rates were 4.4 g N m–2 yr–1 in the Erica soil and 7.8 g N m–2 yr–1 in the Molinia soil. The net nitrification rate was negligibly slow in either soil. In the dry area (gravimetric soil moisture content 7–38%), net N mineralization rates were 6.2 g N M-2 yr–1 in the Calluna soil, 10.9 g N m–2 yr–1 in the Molinia soil and 12.6 g N m–2 yr–1 in the Deschampsia soil. The Calluna soil was consistently drier throughout the year, which may partly explain its slower mineralization rate. Net nitrification was 0.3 g N m–2 yr–1 in the Calluna soil, 3.6 g N m–2 yr–1 in the Molinia soil and 5.4 g N m–2 yr–1 in the Deschampsia soil. The net nitrification rate increased proportionally with the net N mineralization rate suggesting ammonium availability may control nitrification rates in these soils. In the dry area, the faster net N mineralization rates in sites dominated by grasses than in the site dominated by Calluna may be explained by the greater amounts of organic N in the soil of sites dominated by grasses. In both areas, however, the net amount of N mineralized per gram total soil N was greater in sites dominated by Molinia or Deschampsia than in sites dominated by Calluna or Erica. This suggests that in heathlands invaded by grasses the quality of the soil organic matter may be increased resulting in more rapid rates of soil N cycling.  相似文献   
100.
Tomato root growth and distribution were related to inorganic nitrogen (N) availability and turnover to determine 1) if roots were located in soil zones where N supply was highest, and 2) whether roots effectively depleted soil N so that losses of inorganic N were minimized. Tomatoes were direct-seeded in an unfertilized field in Central California. A trench profile/monolith sampling method was used. Concentrations of nitrate (NO3 -) exceeded those of ammonium (NH4 +) several fold, and differences were greater at the soil surface (0–15 cm) than at lower depths (45–60 cm or 90–120 cm). Ammonium and NO3 - levels peaked in April before planting, as did mineralizable N and nitrification potential. Soon afterwards, NO3 - concentrations decreased, especially in the lower part of the profile, most likely as a result of leaching after application of irrigation water. Nitrogen pool sizes and rates of microbial processes declined gradually through the summer.Tomato plants utilized only a small percentage of the inorganic N available in the large volume of soil explored by their deep root systems; maximum daily uptake was approximately 3% of the soil pool. Root distribution, except for the zone around the taproot, was uniformly sparse (ca. 0.15 mg dry wt g-1 soil or 0.5 cm g-1 soil) throughout the soil profile regardless of depth, distance from the plant stem, or distance from the irrigation furrow. It bore no relation to N availability. Poor root development, especially in the N-rich top layer of soil, could explain low fertilizer N use by tomatoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号