首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4564篇
  免费   958篇
  国内免费   96篇
工业技术   5618篇
  2024年   32篇
  2023年   159篇
  2022年   140篇
  2021年   276篇
  2020年   266篇
  2019年   246篇
  2018年   218篇
  2017年   259篇
  2016年   251篇
  2015年   249篇
  2014年   301篇
  2013年   366篇
  2012年   371篇
  2011年   333篇
  2010年   247篇
  2009年   230篇
  2008年   178篇
  2007年   239篇
  2006年   204篇
  2005年   177篇
  2004年   117篇
  2003年   106篇
  2002年   113篇
  2001年   95篇
  2000年   78篇
  1999年   45篇
  1998年   39篇
  1997年   26篇
  1996年   31篇
  1995年   29篇
  1994年   40篇
  1993年   43篇
  1992年   30篇
  1991年   11篇
  1990年   15篇
  1989年   5篇
  1988年   6篇
  1987年   10篇
  1986年   2篇
  1985年   11篇
  1984年   3篇
  1983年   5篇
  1982年   13篇
  1979年   1篇
  1951年   2篇
排序方式: 共有5618条查询结果,搜索用时 31 毫秒
91.
This article aimed to model the effects of raw material properties and roller compactor operating parameters (OPs) on the properties of roller compacted ribbons and granules with the aid of principal component analysis (PCA) and partial least squares (PLS) projection. A database of raw material properties was established through extensive physical and mechanical characterization of several microcrystalline cellulose (MCC) and lactose grades and their blends. A design of experiment (DoE) was used for ribbon production. PLS models constructed with only OP-modeled roller compaction (RC) responded poorly. Inclusion of raw material properties markedly improved the goodness of fit (R2?=?.897) and model predictability (Q2?=?0.72).  相似文献   
92.
The study aimed to prepare sustainable and degradable elastic blends of epoxidized natural rubber (ENR) with poly(lactic acid) (PLA) that were reinforced with flax fiber (FF) and montmorillonite (MMT), simultaneously filling the gap in the literature regarding the PLA-containing polymer blends filled with natural additives. The performed study reveals that FF incorporation into ENR/PLA blend may cause a significant improvement in tensile strength from (10 ± 1) MPa for the reference material to (19 ± 2) MPa for the fibers-filled blend. Additionally, it was found that MMT employment in the role of the filler might contribute to ENR/PLA plasticization and considerably promote the blend elongation up to 600%. This proves the successful creation of the unique and eco-friendly PLA-containing polymer blend exhibiting high elasticity. Moreover, thanks to the performed accelerated thermo-oxidative and ultraviolet (UV) aging, it was established that MMT incorporation may delay the degradation of ENR/PLA blends under the abovementioned conditions. Additionally, mold tests revealed that plant-derived fiber addition might highly enhance the ENR/PLA blend’s biodeterioration potential enabling faster and more efficient growth of microorganisms. Therefore, materials presented in this research may become competitive and eco-friendly alternatives to commonly utilized petro-based polymeric products.  相似文献   
93.
《Ceramics International》2021,47(21):29908-29918
The cellulose derived carbon/graphene/ZnO aerogel composite was prepared as an electrode in order to investigate the electrochemical properties. Carbon aerogel was synthesized using paper as an available cellulose source, and the composite was obtained through a new and simple preparation method including the immersion of monolithic carbon aerogel in graphene oxide/Zn2+ suspension and subsequent chemical reduction and freeze drying. The morphology, functional groups and crystalline structure of the samples were studied with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction Spectroscopy (XRD), respectively. Electrochemical performance of the prepared binder free electrodes was examined using Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). The data revealed that flexible carbon/graphene/ZnO composite resulted in a low density (0.035 g cm−3) electrode with the capacitance of 900 mF cm−2 at a high current density of 10 mA cm−2, lower IR drop and high cyclic stability (capacitance retention of 96%) after 1000 cycles, at 10 mA cm−2. These features were due to the presence of 3D porous conductive network, highly reduced graphene oxide, and the formation of ZnO nanoparticles on graphene sheets. Moreover, polyaniline (PANI) was introduced to carbon/graphene/ZnO composite electrode using electro-oxidation method at different reaction time and aniline concentration in order to achieve remarkably improved capacitance of 2500 mF cm−2 (at 10 mA cm−2) and low charge transfer resistance. Also, after the supercapacitor device assembly, the capacitance was retained. Based on the results, the synthesized composite is a promising material for new generation of lightweight freestanding electrodes with the high electrochemical performance.  相似文献   
94.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
95.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
96.
High-strength regenerated cellulose/ZnAl-layered double hydroxides (LDH) composite membranes (RCL) with good mechanical and antibacterial performance were developed by stirring vigorously cellulose and LDH in NaOH/urea aqueous solvent system at −12°C. The obtained cellulose/LDH composited materials were characterized and the results indicated that well dispersion of LDH in the cellulose matrix. The tensile strength of RCL membranes were enhanced to 92.1 MPa from 68.3 MPa for that of RC film because of the strong interfacial interaction between the LDHs and cellulose matrix as well as the high rigidity of the LDHs. The addition of LDH into the cellulose could improve the thermal stability, water resistance, and flame retardant of the regenerated cellulose film. Zn2+ ions were exited in the cellulose/ZnAl-LDH materials, leading to good antibacterial activities against Staphylococcus aureus and Escherichia coli, which is important for RCL composite materials in antibacterial packaging filed.  相似文献   
97.
采用2,2,6,6-四甲基哌啶-1-氧基(TEMPO)/Na Br/Na Cl O氧化体系将纤维素膜C6位上的羟基氧化为羧基,再利用水溶性偶合试剂N-(3-二甲氨基丙基)-N'-乙基碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)将3-氨基苯硼酸与氧化纤维素膜以形成酰胺键的方式结合起来,从而制备出接枝有苯硼酸官能团的纤维素膜。文中对苯硼酸改性纤维素膜进行了结构表征与力学性能检测,并对改性过程中各因素的影响进行了讨论。结果表明,当TEMPO的用量为0.005 g,Na Br的用量为0.025 g,10%的Na Cl O溶液的用量为4 m L及氧化时间控制在60 min以内时,可以获得力学强度较好的纤维素膜。此外,该膜对含有多醇结构微粒的吸附与解吸过程可通过p H值控制来实现。鉴于苯硼酸结构对多醇类化合物具有的探针作用,所制得的改性纤维素膜在快速方便检测糖尿病等方面具有潜在的应用价值。  相似文献   
98.
We fabricate composite hydrogels using surface‐modified cellulose nanofiber (CNF) and N‐isopropylacrylamide (NIPAm) as a multifunctional crosslinker and monomer, respectively. We expect to produce unique network structures that lead to elastomeric properties rarely reported for CNF‐based materials. The modification of CNF is performed to introduce polymerizable vinyl groups onto the surface of CNF via condensation between the surface hydroxyl groups and 3‐(trimethoxysilyl)propylmethacrylate. The modification and morphology of the surface‐modified CNF (mCNF) are confirmed by FTIR, solid‐state NMR, and FE‐SEM, respectively. We conduct in situ radical polymerization under various conditions using mixtures of the mCNF aqueous suspension, NIPAm monomer, radical initiator, and catalyst. The mechanical properties of the obtained hydrogels (water content = 90 wt %) are evaluated. The gels can be elastically stretched to more than 700 times their original lengths and exhibit an apparent shape recovery with a small permanent deformation (~1/5 of the applied deformation under the gravity field). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42906.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号