首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   44篇
  国内免费   69篇
工业技术   1493篇
  2024年   2篇
  2023年   7篇
  2022年   62篇
  2021年   30篇
  2020年   20篇
  2019年   15篇
  2018年   15篇
  2017年   31篇
  2016年   75篇
  2015年   51篇
  2014年   77篇
  2013年   83篇
  2012年   86篇
  2011年   98篇
  2010年   92篇
  2009年   77篇
  2008年   61篇
  2007年   101篇
  2006年   64篇
  2005年   64篇
  2004年   59篇
  2003年   60篇
  2002年   41篇
  2001年   50篇
  2000年   43篇
  1999年   27篇
  1998年   35篇
  1997年   16篇
  1996年   18篇
  1995年   12篇
  1994年   7篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有1493条查询结果,搜索用时 31 毫秒
41.
Train driving is a highly visual task. The visual capabilities of the train driver affects driving safety and driving performance. Understanding the effects of train speed and background image complexity on the visual behavior of the high-speed train driver is essential for optimizing performance and safety. This study investigated the role of the apparent image velocity and complexity on the dynamic visual field of drivers. Participants in a repeated-measures experiment drove a train at nine different speeds in a state-of-the-art high-speed train simulator. Eye movement analysis indicated that the effect of image velocity on the dynamic visual field of high-speed train driver was significant while image complexity had no effect on it. The fixation range was increasingly concentrated on the middle of the track as the speed increased, meanwhile there was a logarithmic decline in fixation range for areas surrounding the track. The extent of the visual search field decreased gradually, both vertically and horizontally, as the speed of train increased, and the rate of decrease was more rapid in the vertical direction. A model is proposed that predicts the extent of this tunnel vision phenomenon as a function of the train speed.Relevance to industryThis finding can be used as a basis for the design of high-speed railway system and as a foundation for improving the operational procedures of high-speed train driver for safety.  相似文献   
42.
The remote distance measurement (RDM) method requires only common total stations and not special post-processing software. Moreover, this method is easy to operate and highly accurate results can be obtained. Therefore, RDM is used in the displacement monitoring of tunnel engineering. This study presents the calculation formulas for the crown settlement and wall convergence of tunnel as measured by RDM with total station. The mean error formulas are derived based on error propagation laws. When tunnel displacements measured by using total station with the ms not more than 2 mm + 2D ppm (D is the measurement distance) and mα not more than 1″, the horizontal distance between the rear viewpoint and the monitoring section is in the range of 50–150 m, the horizontal distance between the total station and the monitoring section ranges from 40 m to 60 m, and the total station is near the tunnel centerline, the measurement accuracy can reach 1 mm.  相似文献   
43.
Road tunnels exceeding a certain minimum length are equipped with a ventilation system. In case of a fire it is used to achieve a predefined air flow velocity in the tunnel by adequately controlling the installed jet fans in order to ensure sufficient visibility for persons to safely follow the escape routes. As the dynamics of the air flow in road tunnels strongly depend on the tunnel length, short tunnels with longitudinal ventilation systems pose a challenging control task. In this paper, non-linear dynamic feedforward control is proposed for longitudinal ventilation control in case of an emergency. For this purpose, an analytical non-linear zero-dimensional model of the air flow is feedback linearised. Due to its special properties, which are presented and analysed, two different versions of feedforward control are proposed: One is focused on performance, the other on robustness. Finally, the beneficial behaviour of the presented two-degrees-of-freedom control approach is demonstrated by its application to an Austrian motorway tunnel.  相似文献   
44.
Numerical modeling has been used widely in mining and construction industries in recent years. The most important issue in engineering projects designed with numerical modeling is accurate modeling of rock mass behavior. If the rock mass behavior is modeled accurately, fewer problems will be faced during field application of projects. Selection of the true material model is a very important issue in numerical modeling for the tunnel projects. Non-Deformable Support System (NDSS), which will be mentioned in the scope of this research, does not mean that it does not permit any deformation or is a very stiff system. NDSS is a support system that does not permit deformations exceeding specified deformation amounts which are calculated with determination of the accurate rock mass behavior by the true material model and it must be evaluated with support system and excavation advance specifically. The origin of the paper is that numerical modeling provides more comfortable results in tunneling in case one can determine rock mass deformation and failure behavior appropriately. In (NDSS), however, support system element can only be determined by proper numerical modeling analysis. Moreover, deformation values determined by NDSS analysis are accepted as limit values. Therefore, applied support system should be within deformation tolerance limits determined by NDSS analysis. Briefly, this paper is related to NDSS that should be determined by numerical modeling analysis.In this research, in regard to the excessive deformations in T-35 tunnel which is one of the 33 tunnels of Ankara–Istanbul High-Speed Railway Project, results of the in situ measurements in the tunnel excavated with the new developed NDSS and results of the numerical model made with Jointed Rock Mass Model have been compared. It is determined that the results of the numerical modeling and the in situ measurements are very consistent with each other.  相似文献   
45.
Isolation layer is one of the countermeasures to enhance seismic safety of tunnels. Its behavior under earthquake is affected by many factors such as shape of the tunnel, stiffness of the isolation layer and the characteristics of the input motion. However, current knowledge on the effects of these parameters on the seismic behavior of isolation layer is limited to lack of experimental data. This paper focuses on the mechanism of isolation layer, especially the efficacy of input motion frequencies on the seismic behavior of a square tunnel with isolation layer around its outer surface. Dynamic centrifuge tests were carried out on model tunnels which took isolation layer as seismic countermeasure using input motion of sinusoidal waves of different frequencies. Actual records of ground motions, magnified to approximate 15 g peak acceleration, formed the basis of the excitations to verify the actual efficacy. Due to the difference between model material (aluminum alloy) and prototype material (concrete), the similar flexural deformation law and the similar axial deformation law could not be satisfied simultaneously. Given the fact that cross-sectional moments were one of the main factors that influenced the safety of tunnels under dynamic loadings, the similar flexural deformation law was accepted in model preparation. The results show that the bending strains of tunnel with isolation layer around its outer surface are lower than those of tunnel without isolation layer, which indicates that isolation layer has positive effect on moment reduction, especially at corners. Increasing of the input motion frequency decreases the dynamic cross-sectional bending moments. In addition, isolation layer has little influence on frequency contents of acceleration response of tunnel. This study has clarified the mechanism of isolation layer on shock absorption, which is proved to be an effective method to improve the safety of tunnel against earthquake.  相似文献   
46.
The objective of this study is the introduction of an optimum model extent in discontinuous rock masses for tunnel inflow assessment using numerical models. Tunnel groundwater inflow is an important problem in tunneling, and numerical simulation is widely used for estimating the amount of tunnel inflow. An adequate size of the model domain is of very high importance when using such models. On the one hand, if the tunnel boundary is too close to the outer model boundary, the simulated inflow rate into the tunnel is significantly overestimated (which will be shown in the present study). On the other hand, if the model domain is very large, models may become “unhandy”, and simulations become very expensive with respect to computer memory and CPU. In this technical note, an approach is presented that derives an optimum model extent for numerical simulation of tunnel inflow in fractured rock. The approach uses the two-dimensional universal distinct element code (UDEC). The impact of different model parameters, such as tunnel radius, groundwater level, joint spacing, joint dip/dip direction and joint aperture on the optimum model extent has been evaluated. Based on the results, an optimum model extent chart is presented that allows modelers a quick determination of the optimum model extent as a function of the most significant parameters, which are the tunnel depth under the groundwater level, tunnel radius and joint spacing.  相似文献   
47.
When evaluating tunnel-induced ground response in Shanghai soft clay, the soil structure and its degradation behaviour of natural Shanghai soft clay during shield tunnelling should be properly considered. In this paper, a constitutive model that considers the initial soil structure and its destructuration is formulated within the framework of critical-state soil mechanics. The model is successfully calibrated and used to simulate the undrained behaviour of natural Shanghai soft clay. Based on the proposed model, finite-element analyses are conducted to simulate the short- and long-term ground responses induced by tunnelling at Shanghai metro line 2. The comparisons between numerical results and field measurements reported in literature indicate that the soil structure and the tunnel-induced destructuration significantly affects the magnitude and shape of the short-term surface settlement trough and horizontal displacement in Shanghai soft clay. The pore pressure variations around the tunnel are also affected by soil structure, which will significantly influence the long-term ground consolidation settlement in Shanghai soft clay.  相似文献   
48.
This paper presents a Fuzzy Cognitive Maps (FCM) enabled Root Cause Analysis (RCA) approach to assessing the TBM performance in tunnel construction. Fuzzy logic is used to capture and utilize construction experience and knowledge from domain experts, and a cause-effect model consisting of nine concepts is established for simulating the TBM performance within the FCM framework. A tunnel case in the Wuhan metro system in China is used to demonstrate the applicability of the developed approach. Results indicate that (i) C4 (Soil Density) displays a strongest negative correlation with the concept CT (TBM Advance Rate); while C8 (Grouting Speed) displays a strongest positive correlation with CT; (ii) TBM performance is very sensitive to the change of operational conditions, where the values of operational parameters can be adjusted to go up (or down) in case the TBM performance negatively (or positively) reduces; and (iii) we can identify the magnitude of the adjustment scope of operational variables when the TBM operational performance suffers a reduction. The novelty of the proposed approach is that it is verified to be capable of modeling dynamics of system behaviors over time and performing many kinds of what-if scenario analysis, including predictive, diagnostic, and hybrid RCA, which turns out to be a more competitive solution that deals with uncertainty, dynamics, and interactions in the approximate reasoning process, compared to other traditional approximate methods (i.e. Fault Tree Analysis (FTA), Rule-Based Reasoning (RBR), and Case-Based Reasoning (CBR)). The proposed approach can be used as a decision support tool for ensuring the satisfactory performance of TBMs, and thus, increases the efficiency of tunnel construction projects.  相似文献   
49.
Performance prediction of TBMs is an essential part of project scheduling and cost estimation. This process involves a good understanding of the complexities in the site geology, machine specification, and site management. Various approaches have been used over the years to estimate TBM performance in a given ground condition, many of them were successful and within an acceptable range, while some missing the actual machine performance by a notable margin. Experience shows that the best approach for TBM performance prediction is to use various models to examine the range of estimated machine penetration and advance rates and choose a rate that best represents the working conditions that is closest to the setting of the model used for the estimation. This allows the engineers to avoid surprises and to identify the parameters that could dominate machine performance in each case. This paper reviews the existing models for performance prediction of TBMs and some of the ongoing research on developing better models for improved accuracy of performance estimate and increasing TBM utilization.  相似文献   
50.
In this work, a numerical model of tunnel fire is developed and aimed to investigate the influence of cross-sectional fire locations on critical velocity and smoke flow characteristic. It is shown that the critical velocity for a fire next to the wall is obviously higher than that for a fire in the middle or on the left/right lane. The ratio is estimated to be 1.12. The predictions of critical velocity from ‘small-fire’ models show a good agreement with that for a fire in the middle or on the left/right lane from CFD. The tunnel height at the fire location is proposed to be instead of the hydraulic tunnel height in the ‘big-fire’ model of Wu and Bakar for a fire next to the wall. The smoke moves backward in a tongue like form as the ventilation velocity is lower than the critical velocity. The back-layering length of a fire in the middle is shown to be approximate twice than that on the left/right lane under the same ventilation velocity, although they share the same critical velocity. Whereas a relatively short back-layering length for a fire next to the wall under the velocity of 2.6 and 2.7 m/s. In addition, a snaky high-temperature profile on the top wall at the initial downstream is observed for a fire on the left lane and next to the wall, and finally a steady and layered smoke flow. The likely cause of this phenomenon is subsequently explained in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号