首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Due to the small width and the large train blockage ratio in subway tunnel, the smoke back-layering will be different from that in the wider road tunnel with small vehicle blockage ratio. In the train blockage region of tunnel, the velocity of longitudinal ventilated air-flow interacting with the back-flowed smoke gas is different from that in the upstream tunnel without train blockage. Then the back-flowed smoke gas might be prevented in the train blockage region with higher ventilation velocity, otherwise it would be stopped in the upstream tunnel without train blockage but with lower ventilation velocity. They were taken into consideration separately and an equivalent fire source was introduced by dividing the dimensionless heat release rate of fire source into two parts in the cases where the smoke back-layering length is longer than metro train length. A series of full-scale numerical simulations are carried out with FDS to investigate the smoke back-layering length in subway tunnel with different train lengths and longitudinal ventilation velocities. The simulation results indicate that the influence of metro train length on the smoke back-layering is great and cannot be ignored any more. A global correlation model is proposed based on the dimensionless analysis and simulation results.  相似文献   

2.
Curved tunnels are inevitable subjected to the city underground geological conditions. Due to the catastrophic consequence of tunnel fires with high population density, the related researches on fire safety of curved tunnel are full of significance. Therefore, a series of curved subway tunnels with turning radius of 300–1000 m were investigated numerically by FDS 5.5.3 in terms of the smoke back-layering length and critical ventilation velocity under the heat release rate of 5–10 MW. Theoretical analysis shows that the curved tunnel with the local resistance has an advantage of preventing smoke spreading compared with straight tunnel. The simulation results also indicated that both the smoke back-layering length and the critical ventilation velocity increased with the rising turning radius, and the straight tunnel has the largest values. In fact, the local resistance impact factor for the smoke back-layering length in the curved tunnel, \( k_{f} \), was controlled by turning radius \( R \) and ventilation velocity \( V \). The dimensionless critical velocity increased slightly from \( 0.638Q^{*1/3} \) to \( 0.669Q^{*1/3} \) when the turning radius increased from 300 m to 1000 m. Without considering the influence of turning radius (local resistance), previous models cannot be applied to the curved tunnel. The improved prediction models about smoke back-layering length and critical velocity with the factor of turning radius could provide a technical guideline for the tunnel ventilation designs.  相似文献   

3.
Results from a series of fire tests carried out in a horizontal model tunnel (1:10) with longitudinal ventilation are presented. Pool fire with methanol as the fuel was used to simulate the fire source. Temperature and velocity distribution in the model tunnel were measured. The heat release rate, maximum gas temperature under the ceiling, back-layering length and critical velocity were investigated and compared with models proposed previously. Predicted maximum gas temperature under tunnel ceiling by Kurioka’s model agreed well with the experimental data with maximum discrepancy less than 20%. Dimensionless back-layering length was found decreased with the increase of the dimensionless ventilation velocity nearly linearly. Due to the difference between the experimental conditions and validating conditions of models proposed previously, diversities were found between the experimental results and predicted values base on Froude modeling. Maximum discrepancy on critical velocity might be about 40%. Models considering the effect of boundaries and heat loss of smoke more detailedly remain to be further developed.  相似文献   

4.
A study on long tunnel smoke extraction strategies by numerical simulation   总被引:1,自引:0,他引:1  
The performance of different smoke extraction strategies for a long vehicle tunnel was investigated for a 100 MW fire scenario. Computer modeling was used for the investigation with a numerical simulation method. The selection of single-point extraction (SPE) opening strategy versus multi-point extraction (MPE) opening strategy was analyzed. In the single-point extraction (SPE) opening strategy, the smoke spread was found to be contained between the fire site and the point of smoke extraction. This result was obtained when the tunnel air velocity reached the critical velocity for preventing back-layering of smoke. For multi-point extraction (MPE) strategies with more than one opening, the smoke spread to all the extraction openings. Moreover for MPE strategy, air velocities were found to be slower near the middle openings and could be less than the critical velocity. Distributions of smoke spread, CO, visibility and temperature were analyzed. It was found that visibility of smoke and temperature were the key factors for safe evacuation of the personnel in tunnel. The SPE system was found to be more effective than the MPE system for partial transverse ventilation systems.  相似文献   

5.
中国逐渐发展成为世界上隧道和地下工程最多的国 家,其长隧道数量和长度跻身世界前列。据统计,火灾中85%的 人员死亡是由热烟气造成的,目前隧道中采用较为广泛的排烟系 统有纵向排烟系统、集中排烟系统和横向排烟系统,而针对长隧道 来说,我国广泛采用的是竖井式纵向通风,因此,研究纵向通风与 竖井排烟综合效应下隧道火灾烟气流动特性及温度分布规律具有 重要意义。本文建立了1:10 缩尺寸竖井隧道模型,主隧道长度 16.5 m,宽度1.3 m,高度0.65 m;竖井通过排烟横通道与主隧道 连接,排烟横通道设置在主隧道侧面中部,尺寸为1.2 m 长、0.6 m 宽、0.4 m 高;竖井横截面为半径0.6 m 的1/4 圆,高4.6 m。在 竖井隧道模型中开展了一系列油池火实验,选取2 种方形燃烧池 (20 cm×20 cm、23 cm×23 cm)作为火源,设置2 个纵向火源位置 (位置A:火源中心线与排烟横通道中心线距离0.375 m;位置B: 火源中心线与排烟横通道中心线距离1.375 m),7 种纵向通风风 速(0,0.18,0.27,0.35,0.44,0.52,0.69 m/s),定量分析不同工 况下温度分布及烟气逆流长度。研究结果表明:当无纵向通风时, 火焰与隧道地板垂直,且呈轴对称形态;当有纵向通风时,火焰向 下游偏移,且纵向通风风速越大,火焰向下游偏移越明显;当纵向 通风风速为0 m/s 时,由于竖井的存在,火源上、下游两侧烟气温 度分布并非对称,火源下游(竖井侧)烟气温度下降速度较快,与单 洞隧道烟气温度分布明显不同;随纵向通风风速增加,烟气逆流长 度和烟气温度减小,而最大温度偏移距离整体呈增加趋势;当无量 纲纵向通风风速v′<0.19 时,主隧道最大温升△Tmax 与Q2/3/ Hef 5/3 呈正比,而当无量纲纵向通风风速v′>0.19 时,主隧道最大 温升△Tmax 与Q? /(vb1/3Hef 5/3)呈正比,但常数系数均小于Li 等预 测模型中的常数系数;竖井隧道内无量纲纵向烟气温度分布符合 Fan 和Ji 等建立的纵向温度衰减模型,衰减系数k′在1.36~1.63 范围内变化,但其值明显大于单洞隧道纵向温度衰减系数k′;另 外,当火源位于位置A 时,最大烟气温度低于火源位于位置B 时 的最大烟气温度,无量纲纵向烟气温度衰减速度慢于火源位于位 置B 时衰减速度。  相似文献   

6.
A CFD model of the 4th Beijing subway line was used to study the effect of longitudinal ventilation on heat and smoke plume movement in the tunnel. The critical ventilation velocity is correlated with the heat release rate for both a simplified heat fire source model and a complete combustion fire source model with methane gas as fuel. The influences of the heat source length and the fuel gas inlet geometry on the critical velocity are investigated for both fire source models. The results show that the influences of the combustion process and fire source area variation are not included in models based on Froude number preservation theory. Thus, Ri is no longer suitable as a dimensionless number for the critical ventilation velocity when the fire geometry or combustion conditions influence the results. The back-layering air temperature above the front of the fire source can be used to explain the different critical velocity variation regimes for all the simulation conditions.  相似文献   

7.
在真实地铁隧道内开展热烟试验,验证 FDS 模拟结果的正确性。建立地铁隧道三维物理模型,采用 FDS 研究室外空气设计参数对隧道火灾烟气返流长度和临界风速的影响。研究结果表明,室外空气设计参数对烟气返流长度和临界风速有较大的影响。室外空气温度越低,地铁隧道火灾烟气返流长度越长。 室外空气湿度越大,地铁隧道火灾烟气返流长度越短。室外大气压力越大,地铁隧道火灾烟气返流长度越短。  相似文献   

8.
Critical velocity and smoke back-layering length are two of the determining parameters to the fire risk assessment of subway tunnel. These two parameters of a sloping subway tunnel with train blockage were investigated both experimentally and numerically in this paper. To address the influences of slope, the slopes of 0, 3, 6, 9, 12, 15% in downhill subway tunnel were studied and the height (H) of the tunnel was replaced by the inclined tunnel height (\( H/\cos \theta \)). The train model with a dimension of 2 m (length) × 0.3 m (width) × 0.38 m (height) was also chosen in simulations and experiments for the tunnel blockage. Thenceforward, 30 reduced-scale experimental and 150 numerical scenarios were analyzed to predict the critical velocity and smoke back-layering length in various sloping subway tunnels. Six different heat release rates including 5.58, 11.17, 16.67, 22.35, 27.94, and 33.52 kW were considered in the experiments and five different heat release rates including 2.79, 5.58, 8.38, 11.17 and 16.67 kW were considered in the simulations. Based on the comparison in the horizontal tunnel, numerical results were quite consistent with the experiments. The results showed that train blockage influenced the smoke back-layering length, and the critical velocity increases with the tunnel slope. Finally, empirical models were developed to predict the critical velocity and smoke back-layering length in a sloping subway tunnel with train blockage.  相似文献   

9.
隧道火灾是运营公路隧道的主要灾害。为有效控制隧道火灾,采用理论分析和数值模拟相结合的方法研究了设排烟道隧道的火灾烟气逆流长度与临界风速。以国内常见的双车道隧道尺寸建立模型,分析了排烟速率和纵向通风速率对烟气逆流长度的影响,提出了临界风速的预测模型。并将其通风效果与常规未设排烟道的纵向通风做了比较。结果表明:未设排烟道时,纵向风速还未达到临界风速时,火灾下游烟气的层化状态就已破坏。设排烟道能及时排出火灾产生的烟气,有利于保持烟气的层化状态,有效改善火灾时的隧道环境,为火灾下游人员的疏散救援提供了有利条件。同时,设置排烟道有利于减小逆流长度和临界风速。随着排烟速率的增大,相应的临界风速呈指数函数递减的特性。  相似文献   

10.
为了探明火源横向位置对临界风速的影响规律,运用FDS研究马蹄形断面双车道公路隧道内火源位于隧道中心与侧壁两种场景下的临界风速,并改变火源面积,结合理论分析,与前人矩形断面隧道内的研究结果进行对比。结果表明:单位面积热释放速率一定时,临界风速随火源面积的增大而增大;壁面火的临界风速小于中心火的临界风速,与矩形断面隧道存在差异;且随着火源面积的扩大,壁面火与中心火的临界风速比值趋近于1;不能用“镜面效应”解释马蹄形隧道内壁面火与中心火临界风速差异的原因。  相似文献   

11.
通过对海拔为4100m的高海拔隧道进行全尺寸火灾试验,揭示高海拔隧道火灾烟气下沉及温度场变化特征。试验采用三种不同尺寸火源(0.8m2、1.0m2、2.0m2),对隧道火灾烟气蔓延特征、火区最高温度、隧道拱顶纵向温度分布进行研究。试验研究结果表明:隧道火灾试验初期及燃烧稳定阶段,火源附近隧道上层烟气与下层冷空气分界明显,火灾后期烟气下沉严重;较小风速有利于高海拔隧道小规模火灾烟气逆流层纵向和垂向蔓延的控制。隧道火灾温度场研究表明:隧道火灾温升速率随火源热释放率增大而增加;火源附近20m范围内温度衰减速率较快,远火源区域隧道拱顶纵向温度衰减较慢,趋于平缓;通过对火源上方拱顶烟气温度分析,发现隧道火灾探测采用差温报警模式较定温报警模式更加有效,并得出10℃/min的温升速率可基本满足高海拔隧道小规模火灾的初期报警;隧道拱顶纵向温度分布规律导致火源远场烟气下沉严重而近火源区域烟气层化较好的特征。高海拔隧道火灾温度分布特性试验研究,可为高海拔隧道火灾动力特性研究提供依据,为高海拔隧道人员疏散逃生提供指导及建议。  相似文献   

12.
We examined the exhaust performance of a hybrid ventilation strategy for maintaining a safe evacuation environment for tunnel users in a tunnel fire. The hybrid ventilation strategy combines the longitudinal ventilation strategy with the point ventilation strategy which is a type of transverse ventilation strategy. The model tunnel developed by this study was scaled to 1/5 the size of a full-scale tunnel. The model-scale experiment was performed taking into consideration Froude's law of similarity. Measurement items were the distribution of temperature and concentration of smoke inside the tunnel, longitudinal wind velocity, mass flow of smoke in the point ventilation duct, and the heat release rate of the fire source. The following main conclusions were obtained. The smoke height was constant even when varying the extraction rate of smoke from the ceiling vent. The backlayering length and critical velocity of the smoke flow in the hybrid strategy could be predicted by the methodology developed by using the longitudinal strategy. The hybrid strategy maintained a safe evacuation environment on both sides of the tunnel fire.  相似文献   

13.
防止烟气逆流的临界风速是隧道火灾通风排烟系统设计的主要指标。国内外对纯烟气逆流的临界风速研究较多,对阻塞明显且夹带火焰的烟气逆流问题研究得则很少。通过模型试验和数值模拟,对列车着火阻塞在隧道内形成的夹带火焰的烟气逆流及其临界风速进行分析。考虑列车对隧道的阻塞比和火焰热辐射作用的影响,利用能量方程推导出计算临界风速的新公式,并与Oka-Atkinson公式、Wu-Bakar公式等计算纯烟气逆流的临界风速公式进行比较。结果表明新公式更适用于夹带火焰的烟气逆流的情况。同时还发现,列车中部着火和头部着火情况下的临界风速相近,但与列车尾部着火的临界风速不同;隧道内有列车着火和隧道内着火但无列车情况下的临界风速也有所不同。  相似文献   

14.
为满足隧道火灾安全体系研究方面的需要,本文以中国科学技术大学火灾科学国家重点实验室的隧道试验台为对象,进行了比例模型隧道火灾试验,并利用Fire Dynamics Simulator(FDS)软件对该实验在不同纵向风速控制条件下的火灾烟气层沉降速度进行了计算机模拟,通过试验与模拟结果的对比,给出了不同纵向通风速度下,隧道火灾时烟气层沉降速度的变化规律,并提出了烟气分层化临界风速这一概念,为隧道火灾的控制、救援和人员疏散提供了一定的参考价值.  相似文献   

15.
临界风速可有效控制烟气蔓延,是隧道防灾通风重要参数。为分析隧道长度对临界风速的影响,采用量纲分析法构建临界风速与隧道长度关系公式,并分别在5 MW和30 MW火源热释放速率下,对不同长度隧道的火灾进行数值模拟以量化研究隧道长度对临界风速的影响。结果表明,隧道长度对临界风速具有影响,且不同火源释放速率时影响也有所不同:无量纲火源热释放速率小于0.15时,临界风速随隧道长度增大呈现1/41次方增长关系;无量纲火源热释放速率高于0.15时,临界风速随隧道长度增大呈现1/25次方增长关系。进而建立了考虑隧道长度的无量纲临界风速计算公式。  相似文献   

16.
Since the prediction of ‘critical velocity’ is important to control the smoke in tunnel fires, many researches have been carried out to predict critical velocity with various fire sizes, tunnel shape, tunnel slope, and so forth. But few researches have been conducted to estimate critical ventilation velocity for varied burning rate by longitudinal ventilation, although burning rate of fuel is influenced by ventilation conditions. Therefore, there is a need to investigate the difference of upstream smoke layer (e.g., backlayering) between naturally ventilated heat release rate and varied heat release rate by longitudinal ventilation.In this study, the 1/20 reduced-scale experiments using Froude scaling are conducted to examine the difference of backlayering between naturally ventilated heat release rate and varied heat release rate by longitudinal ventilation. And the experimental results obtained are compared with numerical ones. Three-dimensional simulations of smoke flow in the tunnel fire with the measured burning rates have been carried out using Fire Dynamics Simulator; Ver. 406 code, which is developed by National Institute of Standards and Technology. They show a good degree of agreement, even if some deviation in temperature downstream of the fire is evident. Since ventilation velocity had a greater enhancing effect on the burning rate of fuel due to oxygen supply effect, the critical ventilation velocity should be calculated on the basis of varied HRR by ventilation velocity.  相似文献   

17.
超大断面水平隧道纵向通风临界风速CFD分析   总被引:3,自引:1,他引:3  
首先介绍了临界风速研究的基本思路及国内外主要研究成果.结合国内某长大公路隧道设计,建立一长300m、水力高度10.64m的水平隧道模型,通过CFD模拟确定超大断面隧道临界风速的影响因子及相应的准则关联式.模拟表明:与火灾热释放速率相比,环境温度的影响可以忽略不计;与Atkinson(模型试验)及Buxton(大尺度试验)相似,临界风速随热释放速率的变化分为两个区域,与低热释放速率时不同,一旦热释放速率超过40MW,临界风速的变化明显趋于缓慢.  相似文献   

18.
地铁区间隧道火灾通风模式的数值分析   总被引:1,自引:0,他引:1  
介绍了地铁区间隧道火灾常见的几种通风排烟模式,对其中一种最复杂的模式进行了数值分析。模拟分析得出,对于地铁实际工程中的单线盾构圆形隧道,在10 MW火灾强度下,着火区间隧道内2.6~2.9 m/s左右的纵向风速可以有效阻止烟气发生逆流;在着火区间隧道2.9 m/s的纵向风速下,未着火区间隧道两端对送送风速度为1~1.5 m/s时,联络通道内有风速为6 m/s左右的气流流向着火区间隧道,可有效抑制烟气通过联络通道向未着火区间隧道蔓延,保证人员的安全疏散。  相似文献   

19.
隧道火灾研究现状综述   总被引:35,自引:1,他引:34  
简述了隧道火灾的特点、危害性及其烟气控制方法,回顾了国内外对隧道火灾的研究现状,着重介绍了隧道火灾热释放速率、纵向通风的临界风速方面的试验研究成果,并介绍了火灾时隧道内烟气流场、温度场的数值模拟,以及应用于地铁的环境模拟计算程序SES。最后,提出了在隧道火灾及其烟气控制方面今后需要研究的几个问题。  相似文献   

20.
In this paper a computational study was carried out to evaluate the performance of longitudinal ventilation system equipped with an alternative jet fan with respect to traditional one in case of fire in tiled tunnel. The alternative jet fan is equipped with inclined silencers (pitch angle α = 6°) in order to reduce the Coanda effect and consequently shear stress on the tunnel ceiling. The fire was simulated setting heat flux on HGV surface. Computational fluid dynamic analysis was applied to simulate the ventilation in the unidirectional tunnel through κ–ɛ model. The comparison conducted in terms of total thrust required to prevent back-layering phenomena and numerical results were provided in terms of thrust of jet fan values, average velocity values and temperature profiles, for different tunnel slope values. Furthermore the authors have compared the critical velocity provided by CFD analysis with critical velocity provided in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号