首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1564篇
  免费   27篇
  国内免费   23篇
工业技术   1614篇
  2023年   6篇
  2022年   14篇
  2021年   34篇
  2020年   26篇
  2019年   20篇
  2018年   17篇
  2017年   22篇
  2016年   37篇
  2015年   40篇
  2014年   49篇
  2013年   78篇
  2012年   49篇
  2011年   106篇
  2010年   82篇
  2009年   76篇
  2008年   100篇
  2007年   132篇
  2006年   101篇
  2005年   98篇
  2004年   77篇
  2003年   72篇
  2002年   57篇
  2001年   30篇
  2000年   28篇
  1999年   37篇
  1998年   36篇
  1997年   37篇
  1996年   29篇
  1995年   24篇
  1994年   27篇
  1993年   11篇
  1992年   11篇
  1991年   16篇
  1990年   10篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有1614条查询结果,搜索用时 15 毫秒
21.
Estimation of ground penetrating radar's wave velocity in materials is a critical step to accurately estimate depth of embedded line objects in concrete structures, and wetness of material. Errors of velocity are defined as the deviations between the velocities obtained in various oblique angles and those obtained in the traverse normal to the object orientation in a common offset antenna setting. In this paper, we quantified and corrected the errors of such estimation. GPR traverses were designed to travel in various oblique angles θ (90°, 75°, 60° and 45°) relative to the steel bars at 5 cover depths (55 mm, 85 mm, 115 mm, 145 mm and 175 mm). GPR wave velocity at any position within the lateral detection range of steel bars was measured with simple trigonometry in a semi-automated in-house program. It was found that reduction of oblique angles (i.e. θ<90°) causes flatter hyperbolic reflections and the associated errors of velocity can be as much as 30% in the case of an oblique angle 45° before correction. Such errors were corrected after re-scaling the horizontal travel distance with a multiplication factor of sin θ.  相似文献   
22.
Optical tomography is one of the tomography methods which are non-invasive and non-intrusive system, consisting of emitter with detectors. Most of the available detectors systems are intrusive where sensors or probes need to be placed within the analyzed processes and this will create disturbances in the current processes. This research are conducted in order to analyze and proved the capability of laser with Charge Coupled Device in an optical tomography system for detecting air bubbles exist in crystal clear water. Experiments in detecting moving air bubbles are conducted. The images of captured data are reconstructed based on filtered image of Linear Back Projection with Hybrid algorithms. As a conclusion, this research have successfully developed an optical tomography system that capable to capture the image and measure the diameter and velocity of rising air bubbles in a non-flowing crystal clear water.  相似文献   
23.
Industrial applications involving pulsed ultrasound instrumentation require complete non-invasive setups due to high temperatures, pressures and possible abrasive fluids. Recently, new pulser-receiver electronics and a new sensor unit were developed by Flow-Viz. The complete sensor unit setup enables non-invasive Doppler measurements through high grade stainless steel. In this work a non-invasive sensor unit developed for one inch pipes (22.5 mm ID) and two inch pipes (48.4 mm ID) were evaluated. Performance tests were conducted using a Doppler string phantom setup and the Doppler velocity results were compared to the moving string target velocities. Eight different positions along the pipe internal diameter (22.5 mm) were investigated and at each position six speeds (0.1–0.6 m/s) were tested. Error differences ranged from 0.18 to 7.8% for the tested velocity range. The average accuracy of Doppler measurements for the 22.5 mm sensor unit decreased slightly from 1.3 to 2.3% across the ultrasound beam axis. Eleven positions were tested along the diameter of the 48.4 mm pipe (eight positions covered the pipe radius) and five speeds were tested (0.2–0.6 m/s). The average accuracy of Doppler measurements for the 48.4 mm sensor unit was between 2.4 and 5.9%, with the lowest accuracy at the point furthest away from the sensor unit. Error differences varied between 0.07 and 11.85% for the tested velocity range, where mostly overestimated velocities were recorded. This systematic error explains the higher average error difference percentage when comparing the 48.4 mm (2.4–5.9%) and 22.5 mm (1.3–2.3%) sensor unit performance. The overall performance of the combined Flow-Viz system (electronics, software, sensor) was excellent as similar or higher errors were typically reported in the medical field. This study has for the first time validated non-invasive Doppler measurements through high grade stainless steel pipes by using an advanced string phantom setup.  相似文献   
24.
This paper presents a combined experimental and numerical study of the properties of a liquid metal flow inside a cylinder driven by the application of a strong electrical current. The interaction between the electric current running through the melt and the corresponding induced magnetic field produces so-called electro-vortex flows. We consider here a configuration of two parallel pencil electrodes immersed at the free surface. Velocity measurements were performed by means of the Ultrasound Doppler method. A linear array of 25 singular transducers was used to determine the two-dimensional pattern of the vertical flow component. Numerical simulations of the magnetohydrodynamic (MHD) problem were conducted to calculate the Lorentz force, the Joule heating and the induced melt flow. Experimental and numerical results reveal a complex three-dimensional flow structure of the liquid metal flow. In particular, two pronounced downward jets are formed below both electrodes. The flow structure appears to be symmetrical with respect to two vertical cross sections being perpendicular to each other and one of the two planes contains the electrodes. The comparison between the experimental data and the numerical results shows a very good agreement.  相似文献   
25.
Pressure-swirl atomizers are often employed to generate a water-mist spray,typically employed in fire suppression.In the present study,an experimental characterization of dispersion(velocity and cone angle)and atomization(drop-size axial evolution)was carried out following a previously developed methodology,with specific reference to the initial region of the spray.Laser-based techniques were used to quantitatively evaluate the considered phenomena:velocity field was reconstructed through a Particle Image Velocimetry analysis;drop-size distribution was measured by a Malvern Spraytec device,highlighting secondary atomization and subsequent coalescence along the spray axis.Moreover,a comprehensive set of relations was validated as predictive of the involved parameters,following an inviscid-fluid approach.The proposed model pertains to early studies on pressure-swirl atomizers and primarily yields to determine both initial velocity and cone angle.The spray thickness is also predicted and a classic correlation for Sauter Mean Diameter is shown to provide good agreement with experimental results.The analysis was carried out at the operative pressure of 80 bar;two injectors were employed featuring different orifice diameters and flow numbers,as a sort of parametric approach to this spray typology.  相似文献   
26.
Results of studies on ozone synthesis under discharges proceeding in a metal mesh-ceramic dielectric system have been presented. The experiments were carried out in the reactor with unique reaction space geometry, in which the reacting gas flew with consequently increasing linear velocity. The high voltage electrode was made of a metal mesh, which caused intensification of the gas mixing in the reaction space. Using a simple reactor with one-side cooling of the reaction space, high ozone maximum concentrations (100 g/Nm3) and energy efficiencies (180–200 g/kWh) were obtained at 25 °C.  相似文献   
27.
This paper introduces a novel methodology based on disaggregate analysis of two-car crash data to estimate the partial effects of mass, through the velocity change, on absolute driver injury risk in each of the vehicles involved in the crash when absolute injury risk is defined as the probability of injury when the vehicle is involved in a two-car crash. The novel aspect of the introduced methodology is in providing a solution to the issue of lack of data on the speed of vehicles prior to the crash, which is required to calculate the velocity change, as well as a solution to the issue of lack of information on non-injury two-car crashes in national accident data. These issues have often led to focussing on relative measures of injury risk that are not independent of risk in the colliding cars. Furthermore, the introduced methodology is used to investigate whether there is any effect of vehicle size above and beyond that of mass ratio, and whether there are any effects associated with the gender and age of the drivers. The methodology was used to analyse two-car crashes to investigate the partial effects of vehicle mass and size on absolute driver injury risk. The results confirmed that in a two-car collision, vehicle mass has a protective effect on its own driver injury risk and an aggressive effect on the driver injury risk of the colliding vehicle. The results also confirmed that there is a protective effect of vehicle size above and beyond that of vehicle mass for frontal and front to side collisions.  相似文献   
28.
The use of portable short-throat flume in the field is an emerging technique developed for water discharges measurement of inlet in the field. Based on the principle of critical flow and RNG kε three-dimensional turbulence model along with the TruVOF technique, experiments and corresponding simulations were performed for 16 working conditions on the 76 mm width flume with discharges up to 40.01 L/s to determine its hydraulic performance. Hydraulic performance of the flume obtained from simulation analyses were later compared with observed results based on time-averaged flow field, flow pattern, Froude number and velocity distribution. Comparison yielded a solid agreement between results from two methods with relative error below ±10%. Regression models developed for upstream depth versus discharge under different working conditions were satisfying with the relative error of 9.16%, which met the common requirements of flow measurement in irrigation areas. Compared to the long-throat flume, head loss of portable short-throat flume in the field was significantly less. Further, head loss under the free flow condition was less than that under the submerged flow condition of portable short-throat flume with a flat base in the field.  相似文献   
29.
Accurate estimation of ground motion around excavations is important for dynamic rock support design in deep civil tunnels and underground mines. Among the influencing factors, the wavelength-to-excavation span ratio (λ/D) has a large effect on ground motion. Using an advanced wave propagation simulation tool, we performed two series numerical experiments to study the effect of the λ/D ratio on ground motion near excavation boundaries. The modeling results reveal that the wave field becomes more complex as the λ/D ratio decreases. The absolute PPV (Peak Particle Velocity) values around an excavation are closely related to the intensity of the seismic source but the relative PPV value depends on the λ/D ratio. Amplification factors, defined as the PPV in the excavation model to the PPV in the background model without any excavation, are calculated for each case. The amplification factor around the excavation increases significantly as the λ/D ratio decreases. When the λ/D ratio is greater than 30, the wave amplitudes are less affected by the excavation and a seismic wave loading can be considered as “quasi-static.” When the λ/D ratio is less than 20, significant wave interaction occurs and the wave loading needs to be considered as “dynamic.” The numerical results provide additional insights into the ground motion behavior around excavations under both “quasi-static” and “dynamic” loading conditions.  相似文献   
30.
Determining the appropriate hidden layers neuron number is one of the most important processes in modeling the Multi-Layer Perceptron Artificial Neural Network (MLP-ANN). Despite the significant effect of the MLP-ANN neurons number on predicting accuracy, there is no definite rule for its determination. In this study, a new self-neuron number adjustable, hybrid Genetic Algorithm-Artificial Neural Network (GA-ANN), is introduced and its application examined on the complex velocity field prediction of an open channel junction. The results of GA-ANN were compared with those got by the Genetic Programming (GP) method as two applications of the Genetic Algorithm (GA). The comparisons showed that the GA-ANN model can predict the open channel junction velocity with higher accuracy than the GP model, with Root Mean Squared Error (RMSE) of 0.086 and 0.156, respectively. Finally the equation, obtained by applying the GA-ANN model, predicting the velocity at the open channel junction is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号