首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1129篇
  免费   56篇
  国内免费   119篇
工业技术   1304篇
  2024年   3篇
  2023年   62篇
  2022年   92篇
  2021年   86篇
  2020年   128篇
  2019年   97篇
  2018年   117篇
  2017年   125篇
  2016年   72篇
  2015年   23篇
  2014年   61篇
  2013年   48篇
  2012年   35篇
  2011年   76篇
  2010年   41篇
  2009年   35篇
  2008年   18篇
  2007年   22篇
  2006年   16篇
  2005年   23篇
  2004年   13篇
  2003年   18篇
  2002年   10篇
  2001年   13篇
  2000年   7篇
  1999年   7篇
  1998年   15篇
  1997年   13篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1979年   1篇
排序方式: 共有1304条查询结果,搜索用时 78 毫秒
81.
Nanoparticles (NPs) are typically materials with dimensions less than 100 nm. In this work, silicon nanoparticles (SiNPs) were produced by electrical discharge machining of boron doped Si ingot (resistivity 0.01 Ω cm?1). The “top-down” process used in this work involved vaporizing bulk Si material with spark erosion and rapidly cooling the vapors in the presence of deionized water at high-pressure of up to 0.8 MPa, to produce nanosized spheres. The microtopology and element composition analysis of the SiNPs were done by using scanning electron microscopy/energy-dispersive spectroscopy. It was observed that processing under high-pressure flushing conditions ensured production of SiNPs with average diameter of 30 ~ 50 nm and productivity of 1.5 g h?1. SiNPs generated were spherical in shape due to the rapid solidification and surface tension. The structure of SiNPs was found to remain crystalline, according to the X-ray diffraction profiles. Transmission electron microscopy verified identical morphology and size for the SiNPs. The results demonstrate great potential for this process to be an industrialized SiNPs preparation method in terms of both particle size and productivity.  相似文献   
82.
Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.  相似文献   
83.
Measurement of the cement powder composition as a major building material is considered very important. In this paper the capabilities of Spark Induced Breakdown Spectroscopy (SIBS) as a new technique for analysis of cement powder are shown. The major and minor elements of cement such as Ca, Si, Fe, K, Mg, Al, Na, Ba, Ti, V, Pb, Mn and Sr are detected qualitatively. For quantitative measurement, calibration curves are prepared for elements Ca, Si, Mg, Al, Fe and K with limit of detection below 220 ppm. The critical problems such as how to achieve quantitative measurement and improve the detection limits are investigated. The potential and drawbacks of SIBS technique in comparison with XRF for analysis of powder products are discussed.  相似文献   
84.
Pure molybdenum was sintered with SPS under various temperatures, external pressures and heating rates. The microstructure of the specimens representing the different sintering conditions was investigated by classical metallographic methods. The relative density, the microhardness and the chord length distribution were measured. Linear shrinkage, depending on time or temperature, was calculated from piston travel, which was recorded during sintering process. These results show that the main part of consolidation takes place during fast heating up. The densification behaviour is controlled mainly by sintering temperatures and applied pressure. The molybdenum powder was successfully consolidated by SPS in very short times. A relative density of 95% was reached by sintering temperatures of 1600 °C and external pressure of 67 MPa.  相似文献   
85.
The electrostatic precipitator (ESP) technique is a promising method for enhancing the particulate matter (PM) emission reduction efficiency of diesel engines, and is much better than the diesel particulate filter (DPF) technique. However, the ESP's low efficiency in collecting PM with diameters less than several tens of nanometers remains a problem because the particle charging efficiency decreases as the size of the nanoparticles decreases. To improve the collection efficiency of nanosized PM, we used a photoelectric charger to increase the charging efficiency of nanoparticles ahead of the ESP system. Carbon nanoparticles produced using a spark discharge generator were used to evaluate the collection efficiency of the combined photoelectric charger and ESP system. The particle sizes were measured using a scanning mobility particle sizer system at various experimental temperatures similar to the temperature of DPF systems commonly used in diesel engines. We succeeded in obtaining improved collection efficiencies at increased inner temperatures of the photoelectric charging chamber. As the temperature increased from 694 °C to 839 °C at the inlet of the photoelectric chamber, the efficiency of PM collection improved significantly to 28.5% for a particle diameter of 18.4 nm.  相似文献   
86.
The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 °C. For samples consolidated at 25 °C, the density of the CA composite is 61.65 ± 1.07% in comparison to 56.41 ± 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 °C. The theoretical maximum density for the SG composite consolidated to 400 and 500 °C are 81.30 ± 0.58% and 84.42 ± 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 °C are 74.54 ± 0.80% and 77.90 ± 0.79%, respectively. X-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 °C in comparison to samples consolidated at 25 °C.  相似文献   
87.
The concept of minimum ignition energy (MIE) has traditionally formed the basis for studying ignition hazards of fuels. However, the viewpoint of ignition as a statistical phenomenon appears to be more consistent with the inherent variability in engineering test data. We have developed a very low-energy capacitive spark ignition system to produce short sparks with fixed lengths of 1-2 mm, and the ignition system is used to perform spark ignition tests using a range of spark energies in lean hydrogen-oxygen-argon test mixtures used in aviation safety testing. The test results are analyzed using statistical tools to obtain probability distributions for ignition versus spark energy. A second low-energy spark ignition system was also developed to generate longer sparks with varying lengths up to 10 mm. A second set of ignition tests is performed in one of the test mixtures using a range of spark energies and spark lengths. The results are analyzed to obtain a probability distribution for ignition versus the spark energy per unit spark length. Preliminary results show that a single threshold MIE value does not exist, but rather that ignition is statistical in nature and highly dependent on mixture composition and spark length.  相似文献   
88.
《Ceramics International》2023,49(1):145-153
Full-dense B4C-based ceramics with excellent mechanical properties were fabricated using spark plasma sintering with Mg2Si as a sintering aid at a low temperature of 1675 °C while applying a uniaxial pressure of 50 MPa. The effect of Mg2Si addition on the densification behaviours, mechanical properties and microstructure of as-sintered ceramics were investigated. Not only did the formation of ultra-fine grained SiC using the in-situ reaction effectively inhibit the growth of B4C grains, but it also contributed to the strength and toughness of the resultant ceramics. Additionally, microalloying Mg imparted more metal bonding characteristics to the B4C matrix, thereby improving their ductility. The results indicate that the composite containing 7 wt% Mg2Si had excellent mechanical properties, including a light weight of 2.54 g/cm3, Vickers hardness of 34.3 GPa, fracture toughness of 5.09 MPa m1/2 and flexural strength of 574 MPa.  相似文献   
89.
Hafnia based ceramics are potential promising candidates to be used as thermal barrier coatings (TBC) for applications in the field of propulsion. In this study, Spark Plasma Sintering (SPS) of fully stabilised hafnia with yttrium oxide (yttria) was investigated to provide a better understanding of the effect of manufacturing parameters, on the crystallography, chemistry and microstructure of the material. Several hafnia powders, containing different amounts of yttria (33 mol. %, 40 mol. % or 50 mol. %), were sintered by SPS at different temperature levels ranging from 1600 °C to 1850 °C. On these materials, X-ray diffraction patterns associated with scanning electron micrographs have highlighted the influence of both the sintering temperature and the amount of yttria on the final composition, the lattice parameter and the microstructure of hafnia-based materials. In the end, it is established that, for all quantities of yttrium employed, the main phase is Y2Hf2O7 with very high densification levels.  相似文献   
90.
Consolidating a CeO2-doped ZrO2 ceramics, free from monoclinic phase using spark plasma sintering (SPS) is a major challenge faced by previous researchers; Ce+4 → Ce+3 conversion under reducing environments was assigned as the prime factor. We report dense (> 95 % of theoretical density) 20 mol. % CeO2-doped ZrO2 ceramics, free from monoclinic phase and any of micro/ macro-cracks via SPS. The sintering temperature (1175 ℃) used for the present work was the lowest compared to previous reports on the same system. Phase analysis revealed a mixture of tetragonal (major phase) and cubic phase (minor). No depletion of cerium (Ce) from the ZrO2 matrix and no additional/impurity phases were noted after SPS; a common issue that has been observed in most of the previous works. Sintered ceramics showed appreciably high hardness (>11 GPa); the obtained toughness was in-between of tetragonal and cubic CeO2-ZrO2 ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号