首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326869篇
  免费   26894篇
  国内免费   13800篇
工业技术   367563篇
  2024年   1020篇
  2023年   5381篇
  2022年   8663篇
  2021年   13800篇
  2020年   10283篇
  2019年   8473篇
  2018年   9481篇
  2017年   10701篇
  2016年   9361篇
  2015年   13122篇
  2014年   16179篇
  2013年   19266篇
  2012年   21084篇
  2011年   22797篇
  2010年   19709篇
  2009年   18678篇
  2008年   18186篇
  2007年   17541篇
  2006年   18096篇
  2005年   16040篇
  2004年   10234篇
  2003年   8808篇
  2002年   8130篇
  2001年   7195篇
  2000年   7720篇
  1999年   8962篇
  1998年   7142篇
  1997年   6063篇
  1996年   5665篇
  1995年   4671篇
  1994年   3905篇
  1993年   2704篇
  1992年   2200篇
  1991年   1638篇
  1990年   1193篇
  1989年   943篇
  1988年   767篇
  1987年   507篇
  1986年   382篇
  1985年   244篇
  1984年   167篇
  1983年   105篇
  1982年   134篇
  1981年   89篇
  1980年   78篇
  1979年   35篇
  1978年   2篇
  1965年   2篇
  1959年   7篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Shen  Aiguo  Ye  Qiubo  Yang  Guangsong  Hao  Xinyu 《Telecommunication Systems》2021,78(4):629-643
Telecommunication Systems - Machine to Machine technology has a broad application prospect in the 5G network, but there is a bottleneck in the energy consumption of intelligent devices powered by...  相似文献   
82.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
83.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
84.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   
85.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
86.
以阿伏苯宗和三氟化硼为原料,经过一步反应,合成阿伏苯宗二氟化硼(BF2AVB),产物的结构经1HNMR谱确证.基于荧光光谱与X射线粉末衍射测试,对BF2AVB的压致发光性能和机理进行研究.本实验原料易得,反应条件温和,实验操作简单,反应收率高.BF2AVB的压致变色现象明显,通过探讨压致变色机理,加深同学对压致变色材料的了解.同时,该实验可以拓展学科知识,激发学生的专业热情和科研兴趣.  相似文献   
87.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
88.
89.
Wei  Shaowei  Yu  Guoxian  Wang  Jun  Domeniconi  Carlotta  Zhang  Xiangliang 《Machine Learning》2021,110(6):1505-1526
Machine Learning - Traditional clustering algorithms focus on a single clustering result; as such, they cannot explore potential diverse patterns of complex real world data. To deal with this...  相似文献   
90.
Feature-based methods have been developed in the past decades for the registration of optical satellite images. However, it is still a challenging problem to handle well the registration between medium and high spatial resolution images due to the large difference of the spatial structural features and local details for the same objects. In this study, an automated co-registration technique is proposed that integrates an improved SIFT (I-SIFT) and a novel matching strategy called spatial consistency constraints (SCC) to cope with the large difference in spatial resolutions between the image pair. Three constraints on angle, distance, and ratio are introduced to re the initial matching features obtained by I-SIFT. Three groups of experiments were conducted to validate the effectiveness of the proposed method. The experiments used high resolution multispectral and panoramic SPOT 5/6 images and Landsat 5/8 orthorectification images. Experimental results show that the registration error lies in about 1 pixel of high-resolution images and demonstrate that the proposed I-SIFT-SCC approach is suitable for fine registration of optical satellite images from medium spatial resolution to high spatial resolution with resolution ratio up to 6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号