首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(15):21370-21377
A laminated silicon nitride (Si3N4) ceramic material with a hollow, oriented, one-dimensional microstructure was successfully prepared based on the tape casting and sacrificial template method. The results show that hollow, oriented, one-dimensional microstructures can effectively induce crack deflection. Different arrangements of the structural design layer and dense layer will have different effects on the material. In particular, bulks with a single-layer orthogonal arrangement of the structural design layer possess high toughness and obvious crack deflection during the fracture process. A kind of multiscale crack deflection mode was realized. Compared with the fracture toughness of the monolithic Si3N4 ceramic bulk (5.55 MPa m1/2), the fracture toughness can reach 8.73 MPa m1/2, and the flexural strength can still reach 391.47 MPa with only a slight decrease.  相似文献   

2.
《Ceramics International》2022,48(18):25673-25680
The trial-and-error method used in ceramics research has certain limitations such as the high blindness of material component design. Moreover, calculations of the toughness of ceramics using the extended finite element method, which is the most broadly applied technique, are complicated. To overcome these issues, in this study, multilayer graphene (MLG)/Si3N4 whisker (Si3N4w)-reinforced Si3N4 ceramics (MWSCs) were used as the model material, and the modeling of MWSCs was conducted using Voronoi tessellation. Additionally, a more concise novel approach was applied for the prediction of the fracture toughness of MWSCs. Furthermore, the optimal MLG and Si3N4w contents were predicted, and then they were verified by fabricating MWSCs using spark plasma sintering (SPS). Simulation results indicated that the optimum MLG and Si3N4w contents to enable the toughness and hardness to reach the maximum values (9.87 MPa·m1/2 and 23.19 GPa) were 1 wt% and 3 wt%, which were consistent with the experimental results. Consequently, the effectiveness of the proposed method was verified. Moreover, the experimental values of the maximum fracture toughness and hardness were 11.04 MPa·m1/2 and 20.29 GPa, which were 47.20% and 12.10% higher than those of Si3N4 ceramics reinforced with 1 wt% MLG, respectively. The synergistic toughening effects of MLG and Si3N4w were significantly reflected. The load-bearing effect, bridging, and crack deflection induced by MLG and Si3N4w were the key reasons for the improvement in the mechanical properties of MWSCs.  相似文献   

3.
《Ceramics International》2023,49(18):29709-29718
Mechanical alloying and spark plasma sintering (SPS) were used to prepare dense SiAlCN ceramic and SiAlCN ceramic toughened by SiC whiskers (SiCw) or graphene nanoplatelets (GNPs). The influences of different reinforcements on the microstructure and fracture toughness were investigated. The SiAlCN ceramic exhibited a fracture toughness of 4.4 MPa m1/2 and the fracture characteristics of grain bridging, alternative intergranular and transgranular fracture. The fracture toughness of SiCw/SiAlCN ceramic increased to 5.8 MPa m1/2 and toughening mechanisms were crack deflection, SiCw bridging and pull-out. The fracture toughness of GNP/SiAlCN ceramic increased significantly, which was up to 6.6 MPa m1/2. GNPs played an important role in grain refinement, which resulted in the smallest grain size. Multiple toughening mechanisms, including crack deflection, crack branch, GNP bridging and pull-out could be found. The better toughening effect could be attributed to the larger specific surface area of GNPs and the appropriate interface bonding between GNPs and matrix.  相似文献   

4.
The SiCf/Si3N4 composite with low–high–low permittivity sandwich structure was designed for high-temperature electromagnetic (EM) wave absorption and mechanical stability. The SiCf/Si3N4 possessed the remarkable mechanical properties at room temperature (the flexural strength is 357 ± 16 MPa and the fracture toughness is 10.8 ± 1.7 MPa m1/2) for the strong fiber strength, moderate interface bonding strength and uniform matrix. Furthermore, the retention rate is as high as 80% at 800 °C. The A/B/C nanostructure and the sandwich meta-structure endowed the SiCf/Si3N4 with an excellent EM absorbing property at room temperature. The SiCf/Si3N4 still absorbed 75% of the incident EM waves energy in X and Ku bands when the temperature increases up to 600 °C, which is only 6% lower than that at room temperature, for the partial compensation of the decreased interfacial polarization loss for the increased conductivity loss and dipole polarization loss.  相似文献   

5.
The brittleness of Si3N4 ceramics has always limited its wide application. In this paper, Si3N4 ceramics were prepared based on foam. Combining the unique honeycomb structure of the ceramic foams and the self-toughening mechanism of Si3N4, the strengthening and toughening of Si3N4 ceramics can be further achieved by adjusting the microstructure of Si3N4 ceramic foams. The powder particles are self-assembled by particle-stabilized foaming to form a foam body with a honeycomb structure. It was pretreated at different temperatures (1450–1750°C). The microstructure evolution of foamed ceramics at different pretreatment temperatures and the conversion rate of α-Si3N4 to β-Si3N4 at different pretreatment temperatures were explored. Then the foamed ceramics with different microstructures are hot-press sintered to prepare Si3N4 dense ceramics. The effects of different microstructures of foamed ceramics on the strength and toughness of Si3N4 ceramics were analyzed. The experimental results show that the relative density of Si3N4 ceramics prepared at a particle pretreatment temperature of 1500°C is 97.8%, and its flexural strength and fracture toughness are relatively the highest, which are 1089 ± 60 MPa and 12.9 ± 1.3 MPa m1/2, respectively. Compared with the traditional powder hot-pressing sintering, the improvement is 21% and 33%, respectively. It is shown that this method of preparing Si3N4 ceramics based on foam has the potential to strengthen and toughen Si3N4 ceramics.  相似文献   

6.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

7.
《Ceramics International》2020,46(11):18813-18825
This investigation intended to assess the influence of SiC morphology on the sinterability and physical-mechanical features of TiB2-SiC composites. For this aim, different volume percentages of SiC particles and SiC whiskers were introduced to TiB2 samples hot-pressed at 1950 °C for 2 h under an external pressure of 25 MPa. The characterization of as-sintered specimens was carried out using X-ray diffraction, optical microscopy, and scanning electron microscopy. The relative density studies revealed that SiCw had a more significant impact on the sinterability of TiB2-based composites. The XRD investigation confirmed the production of an in-situ TiC phase during the hot-pressing; however, some peaks related to the graphitized carbon also appeared in the patterns of SiCw-doped ceramics. The addition of 25 vol% SiCp halved the average grain size of TiB2 while introducing the same content of SiCw decreased this value by just around 20%. Finally, the highest Vickers hardness and fracture toughness were obtained for the sample reinforced with 25 vol% SiCw, standing at 29.3 GPa and 6.1 MPa m1/2, respectively.  相似文献   

8.
A multiscale structural design was innovatively adopted herein to increase the toughness of monolithic HfB2 ceramics. SiC whiskers (SiCw) and graphene oxide (GO) were used as fillers for the HfB2 matrix, whereas a ductile W foil was introduced as an interlayer to synthesize laminated HfB2-SiCw-rGO/W ceramics. Monolithic HfB2-SiCp (particulate) and laminated HfB2-SiCp/W ceramics were prepared using the same routes and used as controls. Following tape casting and spark plasma sintering at 1800°C, the toughness of the prepared laminated HfB2-SiCw-rGO/W samples was increased to 14.2 ± 0.6 MPa·m1/2, with minimal sacrifice in flexural strength (421 ± 16 MPa). Morphological analysis of the fracture surface revealed the synergistic effects of micro-toughening (including bridging and pullout of whiskers and rGO) and macro-toughening (including crack deflection, bifurcation, and delamination) mechanisms responsible for improving the fracture toughness of the laminated HfB2-SiCw-rGO/W composites.  相似文献   

9.
To improve the reliability, especially the toughness, of the reaction bonded silicon carbide (RBSC) ceramics, silicon carbide whiskers coated with pyrolytic carbon layer (PyC-SiCw) by chemical vapor deposition (CVD) were introduced into the RBSC ceramics to fabricate the SiCw/RBSC composites in this study. The microstructures and properties of the PyC-SiCw/RBSC composites under different mass fraction of nano carbon black and PyC-SiCw were investigated methodically. As a result, a bending strength of 550 MPa was achieved for the composites with 25 wt% nano carbon black, and the residual silicon decreased to 11.01 vol% from 26.58 vol% compared with the composite of 15 vol% nano carbon black. The fracture toughness of the composites reinforced with 10 wt% PyC-SiCw, reached a high value of 5.28 MPa m1/2, which increased by 39% compared to the RBSC composites with 10 wt% SiCw. The residual Si in the composites deceased below to 7 vol%, resulting from the combined actively reaction of nano carbon black and PyC with more Si. SEM and TEM results illustrated that the SiCw were protected by PyC coating. A thin SiC layer formed of outer surface of whiskers can provide a suitable whisker-matrix interface, which is in favor of crack deflection, SiCw bridging and pullout to improve the bending strength and toughness of the SiCw/RBSC composites.  相似文献   

10.
In this study, SiC whisker (SiCw) was introduced to ZrB2 matrix layer of laminated ZrB2/BN ceramics to improve fracture toughness. Laminated ZrB2-SiCw/BN ceramics were prepared by tape casting and spark plasma sintering. For comparison, monolithic ZrB2-SiCw and laminated ZrB2-SiCp/BN ceramics were also prepared using the same method. The introduction of SiC whiskers increased fracture toughness of laminated ZrB2-SiCw/BN ceramics to 13.31?±?0.33?MPa?m1/2 for all samples. This was related to the multi-scale toughening mechanism, including delamination and crack deflection issued from the laminate structure at the macroscopic level, as well as whiskers bridging and pullout at the microscopic view. The R-curve behaviors of all samples revealed improved resistance to crack propagation of laminated ZrB2-SiCw/BN when compared to ZrB2-SiCp/BN and ZrB2-SiCw issued from multi-scale toughening design.  相似文献   

11.
《Ceramics International》2021,47(18):25449-25457
A dense β-Si3N4 coating toughened by β-Si3N4 nanowires/nanobelts was prepared by a combined technique involving chemical vapor deposition and reactive melt infiltration to protect porous Si3N4 ceramics in this work. A porous β-Si3N4 nanowires/nanobelts layer was synthesized in situ on porous Si3N4 ceramics by chemical vapor deposition, and then Y–Si–Al–O–N silicate liquid was infiltrated into the porous layer by reactive melt infiltration to form a dense composite coating. The coating consisted of well-dispersion β-Si3N4 nanowires/nanobelts, fine β-Si3N4 particles and small amount of silicate glass. The testing results revealed that as-prepared coating displayed a relatively high fracture toughness, which was up to 7.9 ± 0.05 MPa m1/2, and it is of great significance to improve thermal shock resistance of the coating. After thermal cycling for 15 times at ΔT = 1200 °C, the coated porous Si3N4 ceramics still had a high residual strength ratio of 82.2%, and its water absorption increased only to 6.21% from 3.47%. The results will be a solid foundation for the application of the coating in long-period extreme high temperature environment.  相似文献   

12.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

13.
《Ceramics International》2020,46(11):18965-18969
Silicon carbide ceramics were prepared by liquid-phase assisted oscillatory pressure sintering (OPS) with graphene and in-situ synthesized SiC whisker as the reinforcements. The effects of sintering temperature on the densification, morphology and mechanical performances of the SiCp-SiCw-graphene ceramics were investigated. In the temperature range from 1700 to 1800 °C, the densification rate of SiCp-SiCw-graphene ceramics was accelerated, ascribing to the reduction in viscosity of the glassy phase. At 1800 °C, the flexural strength and fracture toughness of the OPS ceramics corresponded to 697 MPa and 5.8 MPa m1/2, respectively, which were higher than that of the hot-pressed ceramics under the same temperature conditions. Multiphase toughening mechanisms, such as whisker bridging and pullout, graphene bridging and delamination, were considered as the primary mechanisms. This work demonstrates an effective strategy to prepare silicon carbide ceramics at low sintering temperature.  相似文献   

14.
《Ceramics International》2023,49(19):31439-31444
In this study, the mechanism of the effect of ZrB2 on phase transformation of Si3N4 at a low temperature and the influence of its content on Si3N4-based ceramics were investigated. Previous study has shown that oxide impurities, i.e., B2O3 and ZrO2 on ZrB2 particles, alone cannot contribute to phase transformation of Si3N4 at a low temperature. But, the introduction of 0.5 vol% ZrB2 into Si3N4 ceramics can promote the α-β phase transformation of Si3N4, which is confirmed to be the role of boron by comparison of the experimental results obtained from the addition of 0.5 vol% Zr and 0.5 vol% B. Increasing the ZrB2 content from 0 vol% to 2.5 vol% intensifies the α-β phase transformation while decreasing the α phase content of Si3N4-based ceramics, accompanied by a slight grain growth, leading to a decrease in hardness. At the same time, aspect ratio and the quantities of elongated grains per square micron increase, and thus the fracture toughness increases significantly. However, when the content of ZrB2 increases to 5 vol%, the Si3N4-based ceramics not only have a substantial decrease in hardness, but also the fracture toughness fails to be effectively improved due to high porosity and the decrease in aspect ratio and the quantity of elongated grains per square micron. The current study demonstrates that the dense Si3N4-based ceramics with high hardness and toughness (hardness ∼19.9 ± 0.2 GPa, toughness ∼6.27 ± 0.19 MPa m1/2) can be prepared successfully at 1600 °C by introducing 0.5 vol% ZrB2.  相似文献   

15.
α/β Si3N4 composites with β-Si3N4 content ranging from 26% to 100% were hot-pressed with or without β-Si3N4 seeds, using MgSiN2 as additives, and their mechanical properties were investigated. When the α-Si3N4 content was over 58%, the microhardness of α/β Si3N4 composites was in the range of 23–24 GPa, and then the indentation hardness decreases with decreasing the content of α-Si3N4, whether with β-Si3N4 seeds or not. The toughness increased with increasing elongated β-Si3N4 grains, which improved fracture resistance by crack bridging, pull out or the crack deflection mechanism, and reached the maximum value of 7.0 MPa m1/2 with 1 wt% β-seeds. In comparison with α/β Si3N4 composite with a similar phase composition, the fracture strength was improved by adding β-Si3N4 seeds because of the relatively smaller grain sizes and higher toughness. The α/β Si3N4 composite with 5 wt% β-seeds showed a high strength of 1253 MPa, a high hardness of 20.9 GPa and a toughness of 6.9 MPa m1/2.  相似文献   

16.
Herein, hierarchical porous SiCnw-Si3N4 composite ceramics with good electromagnetic absorption properties were prepared. A porous Si3N4 matrix with different pore structures was first prepared by gelcasting-pressureless sintering (G-PLS) and gelcasting combined with particle stabilized foam-pressureless sintering (G-PSF-PLS). SiCnw was then introduced by catalytic chemical vapor deposition (CCVD). An increase in solid loading (25–40 vol%) decreased apparent porosity (47.7–41.3%) and improved flexural strength (142.19–240.36 MPa) and fracture toughness (2.25–3.68 MPa·m1/2). The addition of foam stabilizer propyl gallate (PG, 0.5–1.0 wt%) significantly increased apparent porosity (73.2–86.4%) and realized large-sized spherical pores, reducing flexural strength (58.23–38.56 MPa) and fracture toughness (0.75–0.41 MPa·m1/2). High apparent porosity and large-sized pores facilitated the introduction of SiCnw. The 25 vol% sample exhibited a reflection loss of ? 14.67 dB with an effective absorption bandwidth of 3.47 GHz, suggesting a development potential in the electromagnetic wave absorption field.  相似文献   

17.
In this paper, Al2O3-Si3N4/ZrO2-Al2O3 laminated composites were fabricated by tape casting and hot press sintering, and the relationships between the process, microstructure, and mechanical properties of Al2O3-Si3N4/ZrO2-Al2O3 laminated composites were determined. The SiAlON phase was found in the Al2O3-Si3N4 layer, and liquid-phase sintering was proposed. Nano-scratch tests were carried out to investigate the interface bonding strength of the laminates. The distribution of residual stresses, generated due to the different coefficients of thermal expansion between the different layers, was estimated according to lamination theory and confirmed using Vickers indentation. When the sintering temperature was 1550 °C, the sintered laminated ceramics had good mechanical properties, with a maximum strength and toughness of 413 MPa and 6.2 MPa m1/2, respectively. The main toughness mechanics of laminated composites was residual stress.  相似文献   

18.
《Ceramics International》2017,43(9):6786-6790
As-received and pre-coated SiC whiskers (SiCw)/SiC ceramics were prepared by phenolic resin molding and reaction sintering at 1650 °C. The influence of SiCw on the mechanical behaviors and morphology of the toughened reaction-bonded silicon carbide (RBSC) ceramics was evaluated. The fracture toughness of the composites reinforced with pre-coated SiCw reached a peak value of 5.6 MPa m1/2 at 15 wt% whiskers, which is higher than that of the RBSC with as-received SiCw (fracture toughness of 3.4 MPa m1/2). The surface of the whiskers was pre-coated with phenolic resin, which could form a SiC coating in situ after carbonization and reactive infiltration sintering. The coating not only protected the SiC whiskers from degradation but also provided moderate interfacial bonding, which is beneficial for whisker pull-out, whisker bridging and crack deflection.  相似文献   

19.
The influence of carbon nanotubes (CNTs) addition on basic mechanical, thermal and electrical properties of the multiwall carbon nanotube (MWCNT) reinforced silicon nitride composites has been investigated. Silicon nitride based composites with different amounts (1 or 3 wt%) of carbon nanotubes have been prepared by hot isostatic pressing. The fracture toughness was measured by indentation fracture and indentation strength methods and the thermal shock resistance by indentation method. The hardness values decreased from 16.2 to 10.1 GPa and the fracture toughness slightly decreased by CNTs addition from 6.3 to 5.9 MPa m1/2. The addition of 1 wt% CNTs enhanced the thermal shock resistance of the composite, however by the increased CNTs addition to 3 wt% the thermal shock resistance decreased. The electrical conductivity was significantly improved by CNTs addition (2 S/m in 3% Si3N4/CNT nanocomposite).  相似文献   

20.
A round-robin of the indentation fracture (IF) method using two alumina ceramics was performed in 12 laboratories to confirm the significantly improved reproducibility of indentation fracture resistance KIFR, using powerful optical microscopy. Powerful optical microscopy with both an objective lens of 40× or 50× and a traveling stage was employed to reduce the error in reading crack length. Indentations at 98 N for the two samples had moderate between-laboratory standard deviations of 0.3 and 0.2 MPa m1/2 for KIFR of 4.3 and 3.6 MPa m1/2, respectively, which indicates the effectiveness of this measurement technique to improve the reliability of the IF method. The deviations of the grand average KIFR reported by the laboratories from those re-measured by the authors using the returned samples were only ca. 0.4 MPa m1/2, which was attributed to the slight misreading of the crack length by the participant laboratories. Thus, the reliability of the IF method seems reasonable by this advanced approach because our recent round-robins, together with this study, have confirmed that the precision for the three major structural ceramics, SiC, Si3N4 and alumina, could meet the necessary condition of reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号