首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605382篇
  免费   8438篇
  国内免费   1873篇
工业技术   615693篇
  2021年   3619篇
  2019年   3379篇
  2018年   13140篇
  2017年   13845篇
  2016年   10056篇
  2015年   5088篇
  2014年   7722篇
  2013年   24917篇
  2012年   15689篇
  2011年   26670篇
  2010年   22012篇
  2009年   23182篇
  2008年   23756篇
  2007年   25840篇
  2006年   16272篇
  2005年   18361篇
  2004年   16309篇
  2003年   15542篇
  2002年   14289篇
  2001年   13871篇
  2000年   13029篇
  1999年   13559篇
  1998年   31954篇
  1997年   23177篇
  1996年   18126篇
  1995年   14073篇
  1994年   12384篇
  1993年   12037篇
  1992年   8974篇
  1991年   8585篇
  1990年   8153篇
  1989年   7912篇
  1988年   7602篇
  1987年   6513篇
  1986年   6424篇
  1985年   7687篇
  1984年   7098篇
  1983年   6299篇
  1982年   5891篇
  1981年   5888篇
  1980年   5502篇
  1979年   5423篇
  1978年   5081篇
  1977年   6176篇
  1976年   8269篇
  1975年   4332篇
  1974年   4210篇
  1973年   4149篇
  1972年   3401篇
  1971年   3023篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Bioactive glasses and glass-ceramics (GCs) effectively regenerate bone tissue, however most GCs show improved mechanical properties. In this work, we developed and tested a rarely studied bioactive glass composition (24.4K2O-26.9CaO-46.1SiO2-2.6P2O5 mol%, identified as 45S5-K) with different particle sizes and heating rates to obtain a sintered GC that combines good fracture strength, low elastic modulus, and bioactivity. We analyzed the influence of the sintering processing conditions in the elastic modulus, Vickers microhardness, density, and crystal phase formation in the GC. The best GC shows improved properties compared with its parent glass. This glass achieves a good densification degree with a two-step viscous flow sintering approach and the resulting GC shows as high bioactivity as that of the standard 45S5 Bioglass®. Furthermore, the GC elastic modulus (56 GPa) is relatively low, minimizing stress shielding. Therefore, we unveiled the glass sintering behavior with concurrent crystallization of this complex bioactive glass composition and developed a potential GC for bone regeneration.  相似文献   
32.
In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3ZrSi2O9) was investigated. The material was synthesized by sintering a mixture of CaCO3, SiO2, and ZrO2 and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3.  相似文献   
33.
Multimedia Tools and Applications - The design of robots capable of operating autonomously in changing and unstructured environments, requires using complex software architectures in which,...  相似文献   
34.
Russian Engineering Research - The stability of robot-mower motion in a specific direction is considered. The direction is regulated by means of an angular sensor and a programmable controller...  相似文献   
35.
This review examines the application, limitations, and potential alternatives to the Hagberg–Perten falling number (FN) method used in the global wheat industry for detecting the risk of poor end-product quality mainly due to starch degradation by the enzyme α-amylase. By viscometry, the FN test indirectly detects the presence of α-amylase, the primary enzyme that digests starch. Elevated α-amylase results in low FN and damages wheat product quality resulting in cakes that fall, and sticky bread and noodles. Low FN can occur from preharvest sprouting (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before harvest cause PHS on the mother plant. Continuously cool or fluctuating temperatures during the grain filling stage cause LMA. Due to the expression of additional hydrolytic enzymes, PHS has a stronger negative impact than LMA. Wheat grain with low FN/high α-amylase results in serious losses for farmers, traders, millers, and bakers worldwide. Although blending of low FN grain with sound wheat may be used as a means of moving affected grain through the marketplace, care must be taken to avoid grain lots from falling below contract-specified FN. A large amount of sound wheat can be ruined if mixed with a small amount of sprouted wheat. The FN method is widely employed to detect α-amylase after harvest. However, it has several limitations, including sampling variability, high cost, labor intensiveness, the destructive nature of the test, and an inability to differentiate between LMA and PHS. Faster, cheaper, and more accurate alternatives could improve breeding for resistance to PHS and LMA and could preserve the value of wheat grain by avoiding inadvertent mixing of high- and low-FN grain by enabling testing at more stages of the value stream including at harvest, delivery, transport, storage, and milling. Alternatives to the FN method explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays, near-infrared spectroscopy, and hyperspectral imaging.  相似文献   
36.
Journal of Materials Science - For transformers and inductors to meet the world’s growing demand for electrical power, more efficient soft magnetic materials with high saturation magnetic...  相似文献   
37.
The main drawback of bioglasses is their restricted use in load bearing applications and the consequent need to develop stronger glassy materials. This has led to the consideration of oxynitride glasses for numerous biomedical applications. This paper investigated two different types of glasses at a constant cationic ratio, with and without nitrogen (a N containing and a N-free glass composition) to better understand the effect of N on the biological properties of glasses. The results revealed that the addition of N increased the glass transition temperature, isoelectric point (IEP) and slightly increased wettability. Moreover, compared to N including glass, N-free glass exhibited better anti-bacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), two key bacteria that infect implants. In summary, these in vitro results indicated that amine functional groups existing in N containing glasses which are missing in N-free glasses, caused a slight difference in wetting behavior and a more obvious change in isoelectric point and in bacterial response. N-free glasses exhibited better inhibitory results both against E. coli and S. aureus compared to N including glass suggesting that oxygen rich glasses should be further studied for their novel antibacterial properties.  相似文献   
38.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
39.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
40.
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40−48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6–40 % isolated yield, which compares favorably to established chemical routes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号