首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用广州白云机场2005-2017年的大气能见度、相对湿度、风速、气温等要素的逐时观测资料,结合花都花东站2012-2017年PM2.5浓度的逐时观测数据,分析了近年来白云机场能见度的变化特征,探究了能见度与气象要素、大气污染物之间的关系。结果表明:2005-2017年白云机场能见度呈逐年增大趋势,低能见度出现次数总体呈减少趋势。2-4月是机场低能见度时期,7月能见度最大。能见度日变化显著,最低能见度通常出现在清晨,午后明显好转。白云机场能见度与相对湿度、PM2.5浓度呈负相关关系,与风速、气温成正相关关系,其中PM2.5浓度对能见度的影响最明显。当相对湿度小于80%时,能见度下降得较为缓慢;而当相对湿度超过80%时,能见度急剧降低。相对湿度越大,出现低能见度所需的PM2.5浓度值就越小。地面风速在0~4 m·s-1时,相对湿度越大,能见度随风速的增长趋势越显著。  相似文献   

2.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

3.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

4.
利用2013-2016年惠州市5个环保国控站的PM质量浓度和国家基本气象观测站的气象要素观测数据及NCEP/NCAR日平均再分析资料,统计分析了惠州市大气颗粒物质量浓度变化特征及其与气象条件的关系。结果表明:2013-2016年惠州市大气颗粒物质量浓度、污染日数和超标日数均呈明显下降趋势,2016年PM10年平均质量浓度已接近年平均质量浓度限值一级标准,PM2.5年平均质量浓度达到年平均质量浓度限值二级标准。大气颗粒物质量浓度冬季的最高、秋季的次之,非汛期的(10月次年3月)显著高于汛期的(4-9月)。PM2.5污染日均出现在非汛期,尤其是冬季的1和12月,大多出现在晴朗干燥的东北风天气下。分析惠州市20132016年间两次长时间大气颗粒物污染过程发现,这两次大气颗粒物污染过程出现在冷空气减弱、冷高压东移出海后或下一波冷空气来临前,但随着南下冷空气的到来,北风加大或带来明显降水,空气质量明显好转。  相似文献   

5.
基于2015年6月淮河流域卫星遥感监测火点信息、环境空气质量监测数据和常规气象观测资料,利用ANUSPLIN和ArcGISKriging方法对气象要素和主要大气污染物浓度空间栅格化,分析了秸秆焚烧关键期内AQI和主要污染物浓度的时空变化特征及其与气温、相对湿度、风速等气象要素的相关关系。结果表明:秸秆焚烧关键期内,淮河流域城市AQI、PM10与PM2.5浓度均明显升高,且与卫星监测火点具有一定时空响应关系。在时间变化上,AQI、PM10与PM2.5浓度6月上中旬呈波动上升,6月下旬趋于回落;在空间分布方面,AQI、PM10与PM2.5浓度三者分布形态相似,总体上呈现"南低北高、两高一低"分布特征;期间AQI、PM10与PM2.5浓度与气温呈显著正相关,与相对湿度呈显著负相关,与风速的相关性不显著。  相似文献   

6.
通过对济南2013年12月—2018年2月PM2.5质量浓度数据分析得出,PM2.5质量浓度平均和最大值均为冬季最高,春秋季次之,夏季最低;PM2.5质量浓度值1月和12月最高,8月最低;其质量浓度呈明显的逐年递减趋势。在不同风向上PM2.5质量浓度存在显著差异性,在N风向和ESE(盛行)风向上均出现了质量浓度较大值,一方面与污染物的异地输送有关,另一方面与济南的特殊地形有关。研究表明,无论污染源在山脉的背风侧还是迎风侧,都很容易导致高浓度污染;尤其在冬季,山脉地形还会加重逆温影响,使污染程度加重。通过相关性研究发现,冬季、春季和秋季,PM2.5质量浓度与相对湿度和平均总云量均呈正相关,与日照时数及其距平呈负相关;冬季,PM2.5质量浓度与平均气温及其距平以及最高、最低气温均呈正相关,与平均、最高、最低气压均呈负相关;春季和秋季,PM2.5质量浓度与气温距平值呈正相关;夏季和秋季,PM2.5质量浓度与日降水量呈负相关,而且随着雨强的增大,对PM2.5的洗消作用越显著。上述变量间相关性均通过了P≤0.01显著性检验。  相似文献   

7.
利用2013—2014年银川地区大气颗粒物质量浓度和同期气象要素的观测资料,分析了银川地区大气颗粒物浓度的分布特征及其与气象条件的关系。结果表明:2013—2014年银川地区PM_(10)、PM_(2.5)、PM1年平均浓度分别为167.3μg·m-3、67.2μg·m-3和45.0μg·m-3,年平均PM_(2.5)/PM_(10)、PM1/PM_(10)、PM1/PM_(2.5)分别为45.0%、32.0%和65.0%;PM_(10)浓度3月最高,8月最低,PM_(2.5)和PM1最高浓度均出现在1月,PM_(2.5)最低浓度出现在8月,PM1最低浓度出现5月;3—5月为PM_(2.5)/PM_(10)、PM1/PM_(10)和PM1/PM_(2.5)最低的3个月。不同天气类型PM_(10)浓度由高至低依次为浮尘/扬沙典型天气平均霾晴天雾,不同天气类型PM_(2.5)浓度由高至低依次为扬沙/浮尘霾典型天气平均晴天雾,不同天气类型PM1浓度由高至低依次为霾典型天气平均雾晴天浮尘/扬沙。风速与PM_(10)浓度呈正相关关系,风速与PM_(2.5)和PM1浓度均呈负相关关系;PM_(10)浓度在偏西北风时较高,PM_(2.5)和PM1浓度在偏西南风与偏东北风时较高;气温与PM_(10)、PM_(2.5)、PM1浓度均呈显著的负相关关系;相对湿度与PM_(10)浓度呈显著的负相关关系,相对湿度与PM1浓度呈显著的正相关关系,相对湿度与PM_(2.5)相关性较弱;气压对PM_(10)浓度变化的影响较小,气压与PM_(2.5)、PM1浓度呈正相关关系;降水对PM_(10)的清除作用最强,对PM_(2.5)的清除作用次之,对PM1基本无清除作用。  相似文献   

8.
利用2015年1月至2017年6月桂林国家基本气象站能见度、相对湿度、气温、气压、降水等气象要素和PM10、PM2.5、PM1.0颗粒物质量浓度资料,分析桂林城区大气能见度与颗粒物浓度和气象因子之间关系。结果表明:桂林城区大气能见度和PM10、PM2.5、PM1.0呈对数关系,相关系数分别为-0.341、-0.461、-0.509,颗粒物对大气能见度影响在相对湿度为60%—70%时最为显著。在各气象因子中,大气能见度与风速的相关性最好,其次为相对湿度,与风速呈二次函数关系,与相对湿度呈幂指数关系,与温度相关性较小,与气压在秋冬季节呈正相关,相关系数冬季可达0.301,但在春、夏季节相关性不显著;利用颗粒物浓度和气象要素建立8种大气能见度非线性统计回归模型,比较后发现利用PM1.0、风速、相对湿度、气温等因子建立的不同季节大气能见度拟合公式在实际检验中效果最优,能较好地模拟桂林地区大气能见度的变化。  相似文献   

9.
利用2017—2021年西安泾河站颗粒物监测数据和地面气象观测数据,统计分析了西安北郊PM10、PM25质量浓度的时间变化特征及其与气温、风向风速、降雨等气象要素的关系。结果表明:近5 a来西安北郊PM10、PM25质量浓度年均值分别为1175 μgm3、752 μgm3,PM10、PM25质量浓度整体呈逐年下降趋势;季节变化表现为夏季最低,冬季最高,春秋季次之;PM10、PM25质量浓度月变化分别呈现出1—8月下降而8—12月升高,1—7月下降而7—12月升高的“单谷型”结构;PM25质量浓度占PM10质量浓度的比例表现为冬季最高,春季最低,夏秋季较均匀,1月该比例最大为766%,5月最小为48%;PM10、PM25质量浓度日变化规律为上午和夜间高而下午低的双峰特征,整体表现为夜间浓度高于日间,但变化幅度小于日间;PM10、PM25质量浓度与气温呈负相关,当风速在45 m/s以下时与风速呈负相关,来自偏西北方向的污染物对颗粒物质量浓度影响较大;降雨量大时,颗粒物质量浓度相对较低,但降水对PM10、PM25的清除率均达不到100%。  相似文献   

10.
苏州市能见度与影响因子关系研究   总被引:6,自引:2,他引:4  
利用2009年6月—2010年5月苏州市气象局霾监测点颗粒物浓度、能见度、相对湿度、风速、风向、气温等观测资料,分析了苏州能见度变化特征,建立了能见度和影响因子的统计模型,研究了能见度和气象因子及颗粒物浓度的关系。结果表明:苏州市能见度有明显的季节变化,春季能见度最好,秋季能见度最低;能见度日变化显著,最低能见度通常出现在清晨,午后明显好转;PM10、PM2.5、黑碳浓度值和相对湿度与能见度都呈反相关关系,但黑碳对能见度的影响不如PM10和PM2.5对能见度的影响明显;风速与能见度呈正相关关系,在东南、南东南风向时能见度值最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号