首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.  相似文献   

2.
The Longmenshan fault zone is divided into three sections from south to north in the geometric structure. The middle and northern segments are mainly composed of three thrust faults, where the deformation of foreland is weak. The geometric structure of the southern segment is more complex, which is composed of six fault branches, where the foreland tectonic deformation is very strong. The Wenchuan MS8.0 earthquake occurred in the middle of the Longmenshan in 2008, activating the bifurcation of two branches, the Yingxiu-Beichuan and the Guixian-Jiangyou faults. In 2013, the Lushan MS7.0 earthquake occurred in the southern Longmenshan, whose seismogenic structure was considered to be a blind fault. After the Lushan earthquake, the seismic hazard in the southern Longmenshan has been widely concerned. At present, the studies on active tectonics in the southern Longmenshan are limited to the Dachuan-Shuangshi and the Yanjing-Wulong faults. The Qingyi River, which flows across the southern Longmenshan, facilitates to study fault slip by the deformation of river terraces. Based on satellite imagery and high-resolution DEM analysis, we measured the fluvial terraces along the Qingyi river in detail. During the measurement, the Sichuan network GPS system (SCGNSS)was employed to achieve a precision of centimeter grade. Besides, the optical luminescence dating (OSL)method was employed to date the terraces' ages. And the late Quaternary activities of the six branch faults in the southern Longmen Shan were further analyzed. The Gengda-Longdong, Yanjing-Wulong and the Xiao Guanzi faults (west branch of the Dachuan-Shuangshi fault)all show thrust slip and displaced the terrace T2. Their average vertical slip rates in the late Quaternary are 0.21-0.30mm/a, 0.12-0.21mm/a and 0.10-0.12mm/a, respectively. Since the Late Quaternary, vertical slip of the east branch of the Dachuan-Shuangshi fault was not obvious, and the arc-like Jintang tectonic belt was not active. Crustal shortening rate of the southern Longmenshan thrust fault zone in the late Quaternary is 0.48-0.77mm/a, which equals about half of the middle segment of the Longmenshan. Based on the previous study on the tectonic deformation of the foreland, we consider that the foreland fold belt in the southern Longmenshan area has absorbed more than half of the crustal shortening. The three major branch faults in the southern Longmenshan are active in the late Quaternary, which have risk of major earthquakes.  相似文献   

3.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

4.
The 2008 Wenchuan earthquake occurred along the Longmen Shan fault zone, only five years later, another M7 Lushan earthquake struck the southern segment where its seismic risk has been highly focused by multiple geoscientists since this event. Through geological investigations and paleoseismic trenching, we suggest that the segment along the Shuangshi-Dachuan Fault at south of the seismogenic structure of the Lushan earthquake is active during Holocene. Along the fault, some discontinuous fault trough valleys developed and the fault dislocated the late Quaternary strata as the trench exposed. Based on analysis of historical records of earthquakes, we suggest that the epicenter of the 1327 Tianquan earthquake should be located near Tianquan and associated with the Shuangshi-Dachuan Fault. Furthermore, we compared the ranges of felt earthquakes(the 2013 M7 Lushan earthquake and the 1970 MS6.2 Dayi earthquake)and suggest that the magnitude of the 1327 Tianquan earthquake is more possible between 6½ and 7. The southern segment of the Longmen Shan fault zone behaves as a thrust fault system consisting of several sub-paralleled faults and its deep structure shows multiple layers of decollement, which might disperse strain accumulation effectively and make the thrust system propagate forward into the foreland basin, creating a new decollement on a gypsum-salt bed. The soft bed is thick and does not facilitate to constrain fault deformation and accumulate strain, which produces a weak surface tectonic expression and seismic activity along the southern segment, this is quite different from that of the middle and northern segments of the Longmen Shan fault zone.  相似文献   

5.
熊坡背斜构造变形与蒲江-新津断裂活动特征   总被引:3,自引:0,他引:3  
熊坡背斜位于龙门山构造带东南端的成都盆地内,是龙门山逆冲推覆构造向前推挤进入盆地内部的一个主要变形区域,与其配套发育的断裂为蒲江-新津断裂,断裂与背斜褶皱之间在构造变形模式上表现出明显的一致性。在褶皱和断裂的构造变形和活动特征上,熊坡背斜南段表现为一种不对称的褶皱,向NE方向发展表现为较为宽缓的对称褶皱形态,卷入的地层主要是中生代及其以前的地层,对蒲江-新津断裂的地貌调查结果表明,断裂没有对该区域内广泛发育的冲沟Ⅰ级阶地产生影响,而对山前发育的相当于南河(岷江Ⅰ级支流)Ⅳ级阶地的洪积台地有明显的控制作用,说明断裂活动时间应该为第四纪早期,到第四纪晚期活动减弱或是趋于静止  相似文献   

6.
The Fodongmiao-Hongyazi Fault (FHF)is one of the most active faults of the northern Qilian thrust fault zone. The 1609 Hongyazi M7 1/4 earthquake occurred on the east segment of the FHF, an area with a complex geometry at the Mayinghe River site. The seismogenic pattern of this earthquake revealed by complex surface ruptures remains unclear. In this paper, we focus on active tectonic deformation around the Hujiatai anticline (HA)in the Mayinghe River site. Combining with topographic survey via dGPS across deformed terraces and alluvial fans, a field survey of the geological section across the HA, the characteristics of the active fold and several sub-faults were constrained. Meanwhile, combined with the seismic reflection profiles passing through the anticline, the correspondence relationship between surface expressions of this tectonic and the deep structure was discussed. According to our research, the HA is a result of northward propagation of the range-front thrust fault F1. At the same time, a thrust fault F2 with dextral strike-slip motion and a thrust fault F4 were formed on the east side and north side of the HA, respectively. These two active faults accommodated local deformation. Trench results and 14C dating reveal that the 1609 Hongyazi M7 1/4 earthquake ruptured the T1 terrace in the Huangcaoba site. Combined with previous field investigations and literature about the 1609 Hongyazi earthquake, we suggest that this earthquake occurred on the range-front fault F1, and the depth of the hypocenter may be about 8~22km.  相似文献   

7.
In order to reveal the deformation and cumulative stress state in Longmenshan and its adjacent faults before Wenchuan earthquake,a 3D viscoelastic finite element model,which includes Longmenshan,Longriba,Minjiang and Huya faults is built in this paper.Using the GPS measurement results of 1999-2004 as the boundary constraints,the deformation and movement of Longmenshan fault zone and its adjacent zones before Wenchuan earthquake are simulated.The conclusions are drawn in this paper as follows:First,velocity component parallel to Longmenshan Fault is mainly absorbed by Longriba Fault and velocity component perpendicular to the Longmenshan Fault is mainly absorbed by itself.Because of the barrier effect of Minjiang and Huya faults on the north section of Longmenshan Fault,the compression rate in the northern part of Longmenshan Fault is lower than that in the southern part.Second,extending from SW to NE direction along Longmenshan Fault,the angle between the main compressive stress and the direction of the fault changes gradually from the nearly vertical to 45 degrees. Compressive stress and shear stress accumulation rate is high in southwest segment of Longmenshan Fault and compressive stress is greater;the stress accumulation rate is low and the compressive stress is close to shear stress in the northeast segment of the fault.This is coincident with the fact that small and medium-sized earthquakes occurred frequently and seismic activity is strong in the southwest of the fault,and that there are only occasional small earthquakes and the seismic activity is weak in the northeast of the fault.It is also coincident with the rupture type of thrust and right-lateral strike-slip of the Wenchuan earthquake and thrust of the Lushan earthquake.Third,assuming that the same type and magnitude of earthquake requires the same amount of stress accumulation,the rupture of Minjiang Fault,the southern segment of Longmenshan Fault and the Huya Fault are mainly of thrust movement and the earthquake recurrence period of the three faults increases gradually.In the northern segment of Longriba Fault and Longmenshan Fault,earthquake rupture is of thrusting and right-lateral strike-slip. The earthquake recurrence period of former is shorter than the latter.In the southern segment of Longriba Fault,earthquake rupture is purely of right-lateral strike-slip,it is possible that the earthquake recurrence period on the fault is the shortest in the study region.  相似文献   

8.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

9.
汶川8.0级地震发震断层的累积地震位错研究   总被引:1,自引:0,他引:1  
2008年5月12日,四川省汶川县内发生MS8.0地震。此次地震沿龙门山中央断裂产生1条长达200km的同震地表破裂带。文中选择位于地震地表破裂带北段的南坝镇、凤凰村以及南段的映秀镇这3个地点,以被断层错断的河流阶地为研究对象,对多级阶地面上的地震地表破裂及断层陡坎地貌进行了野外实测工作。经过测量数据的计算和分析,得到了各级阶地上断层陡坎的高度,该值即为该阶地记录的地震断层的累积垂直位错量。若以本次地震的垂直位错量作为古地震位错量的均值,则可计算得到每级阶地累积的地震次数。研究结果表明,各点T1阶地形成以来仅经历过1次事件,即本次地震事件;T2阶地形成以来约经历了5次事件;T3阶地形成以来约经历了9~11次事件;T4阶地形成以来约经历了20次事件。在本文研究的基础上,结合前人的阶地测年数据,则可获得古地震复发间隔的可靠数据  相似文献   

10.
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk. Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene. The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake. In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.  相似文献   

11.
用岷江都江堰—汶川段晚第四纪阶地面的变形量估算了龙门山断裂带中段的滑动速率。岷江及其支流发育3级晚第四纪河流阶地,阶地面的年龄分别约为10,20,50kaBP。阶地纵剖面在茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂处有明显的垂直变形。断裂活动具有间歇性特点,晚第四纪以来有过3期活动,其起始时间分别为50,20,10kaBP。依据各级阶地面年龄和变形量估算的茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂晚第四纪逆冲滑动速率分别为0.5,0.6~0.3,0.2mm/a;据阶地走滑位错估算的茂汶-汶川断裂和北川-映秀断裂的晚第四纪右旋走滑速率均约为1mm/a。现代河床之下发育很厚的河流堆积物表明,龙门山的构造抬升经历了较为复杂的过程  相似文献   

12.
Nine earthquakes with M≥6 have stricken the northern segment of the Red River fault zone since the historical records, including the 1652 Midu M7 earthquake and the 1925 Dali M7 earthquake. However, there have been no earthquake records of M≥6 on the middle and southern segments of the Red River Fault, since 886 AD. Is the Red River fault zone, as a boundary fault, a fault zone where there will be not big earthquake in the future or a seismogenic structure for large earthquake with long recurrence intervals?This problem puzzles the geologists for a long time. Through indoor careful interpretation of high resolution remote sensing images, and in combination with detailed field geological and geomorphic survey, we found a series of fault troughs along the section of Gasha-Yaojie on the southern segment of the Red River fault zone, the length of the Gasha-Yaojie section is over ten kilometers. At the same time, paleoseismic information and radiocarbon dating result analysis on the multiple trenches show that there exists geological evidence of seismic activity during the Holocene in the southern segment of the Red River fault zone.  相似文献   

13.
On the basis of dividing and comparison of the Neogene strata and their bottoms revealed by 7 drill holes in Taikang area, we completed 101 seismic profiles with a total length of 4991km. Seismic data were compared and interpreted. The results indicate that Xinzheng-Taikang Fault, as a blind fault extending from Xinzheng to Taikang, which was considered as an EW striking fault from Xuchang to Taikang before, is the boundary of Taikang uplift and Zhoukou depression, controlling the sedimentation since Neogene Period. So we named the fault the Xinzheng-Taikang Fault, which is composed of two branches, mainly, the east and west branches. The west branch strikes northwest, dipping northeast with steep angles, and the fault plane extending more than 140km in length. As revealed on the seismic profiles, the eastern segment of the west branch is normal fault, while the west segment of the branch shows characteristics of strike-slip fault. The east branch trends NW-NEE, dipping SW-SSE with the length of about 50km. Two branches form a minus flower structure, indicating the strike slip-extension tectonic background. The bottom of Neogene strata is offset about 120m by the east branch, 20m by the west branch, and the bottom of Quaternary is probably offset too. Meanwhile, latest studies suggest that the composite strip of the two branches of Xinzheng-Taikang Fault, which is a tectonic transfer zone, is the subduction zone between the two strike-slip faults. The tectonic stress tends to be released by the east-west branch fault, and the zone should be the seismogenic structure for the recent seismicity in Taikang area. In 2010, the latest earthquake ofMS4.7 occurred in this area, causing 12 people wounded. The seismogenic structure was considered to be the Xinzheng-Taikang Fault. So locating the fault exactly is of great importance to disaster prevention.  相似文献   

14.
Bayan Hara Block is one of the most representative active blocks resulting from the lateral extrusion of Tibet Plateau since the Cenozoic. Its southern and northern boundary faults are characterized by typical strike-slip shear deformation. Its eastern boundary is blocked by the Yangze block and its horizontal movement is transformed into the vertical movement of the Longmen Shan tectonic belt, leading to the uplift of the Longmen Shan Mountains and forming a grand geomorphic barrier on the eastern margin of the Tibet Plateau. A series of large earthquakes occurred along the boundary faults of the Bayan Hara Block in the past twenty years, which have attracted attention of many scholars. At present, the related studies of active tectonics on Bayan Hara Block are mainly concentrated on the boundary faults, such as Yushu-Ganzi-Xianshuihe Fault, East Kunlun Fault and Longmen Shan Fault. However, there are also some large faults inside the block, which not only have late Quaternary activity, but also have tectonic conditions to produce strong earthquake. These faults divide the Bayan Hara Block into some secondary blocks, and may play important roles in the kinematics and dynamics mechanism of the Bayan Hara Block, or even the eastern margin of the Tibet Plateau. The Dari Fault is one of the left-lateral strike-slip faults in the Bayan Hara Block. The Dari Fault starts at the eastern pass of the Kunlun Mountains, extends eastward through the south of Yalazela, Yeniugou and Keshoutan, the fault strike turns to NNE direction at Angcanggou, then turns to NE direction again at Moba town, Qinghai Province, and the fault ends near Nanmuda town, Sichuan Province, with a total length of more than 500km. The fault has been considered to be a late Quaternary active fault and the 1947 M73/4 Dari earthquake was produced by its middle segment. But studies on the late Quaternary activity of the Dari Fault are still weak. The previous research mainly focused on the investigation of the surface rupture and damages of the 1947 M73/4 Dari earthquake. However, there were different opinions about the scale of the M73/4 earthquake surface rupture zone. Dai Hua-guang(1983)thought that the surface rupture of the earthquake was about 150km long, but Qinghai Earthquake Agency(1984)believed that the length of surface rupture zone was only 58km. Based on interpretation of high-resolution images and field investigations, in this paper, we studied the late Quaternary activity of the Dari Fault and the surface rupture zone of the 1947 Dari earthquake. Late Quaternary activity in the central segment of the Dari Fault is particularly significant. A series of linear tectonic landforms, such as fault trough valley, fault scarps, fault springs and gully offsets, etc. are developed along the Dari Fault. And the surface rupture zone of the 1947 Dari earthquake is still relatively well preserved. We conducted a follow-up field investigation for the surface rupture zone of the 1947 Dari earthquake and found that the surface rupture related to the Dari earthquake starts at Longgen village in Moba town, and ends near the northwest of the Yilonggounao in Jianshe town, with a length of about 70km. The surface rupture is primarily characterized by scarps, compressional ridges, pull-apart basins, landslides, cleavage, and the coseismic offset is about 2~4m determined by a series of offset gullies. The surface rupture zone extends to the northwest of Yilonggounao and becomes ambiguous. It is mainly characterized by a series of linear fault springs along the surface rupture zone. Therefore, we suggest that the surface rupture zone of the 1947 Dari earthquake ends at the northwest of Yilonggounao. In summary, the central segment of the Dari Fault can be characterized by strong late Quaternary activity, and the surface rupture zone of the 1947 Dari earthquake is about 70km long.  相似文献   

15.
在2008年5月12日汶川MS8.0地震和2013年4月20日芦山MS7.0地震中,龙门山中央断裂南段的盐井—五龙断裂均未发现地表破裂现象,加之该断裂浅层地球物理资料极度匮乏,在一定程度上限制了对龙门山断裂带南段地震危险性的评价和发震能力的评估。针对龙门山中央断裂南段的盐井-五龙断裂经过区段的主要乡(镇)所在地多为宽度不大于300m的山间峡谷地区,且探测场区存在交通条件不便、场地工作面狭窄等问题,在浅层地震反射波法探测工作中采用小道间距、小偏移距、多道短排列接收和共反射点多次覆盖观测的地震数据采集方式,并经数据处理后获得地震反射剖面图像。浅层地震探测定位结果结合高密度电阻率成像断面、探槽开挖和钻孔联合剖面资料,共同揭示了NE向的盐井—五龙断裂在宝兴县五龙乡东风村一带精确的空间展布位置、产状规模和近地表构造形态。探测结果表明盐井—五龙断裂于五龙乡北东风村西河两岸的T1阶地处隐伏通过,性质为倾向NW的逆冲断裂,近地表倾角50°~60°,上断点埋深19m。该断裂断错宝兴西河T2、T3阶地,西河右岸T1阶地断裂通过处两侧基岩的断距6~8 m,其破碎带及其影响带宽度约30m。本文浅层地球物理探测成果可对判定盐井—五龙断裂的近地表构造活动提供可靠的地震学证据,也为地震重灾区(宝兴县城)的灾后工程选址重建、地震危险性评价和制定抗震防灾规划提供了科学的基础资料。  相似文献   

16.
有关1976年唐山地震发震断层的讨论   总被引:2,自引:1,他引:2       下载免费PDF全文
江娃利 《地震地质》2006,28(2):312-318
对《地震地质》刊登的两篇文章中有关唐山断裂是高角度西倾的逆冲走滑断裂及唐山市东侧付庄-西河断裂是唐山地震的发震断裂的观点进行讨论。笔者认为,如果唐山地震断层是西倾的逆冲走滑活动,需要考虑唐山逆冲断裂的活动方式与唐山市西侧第四纪凹陷之间的关系;如果付庄-西河断裂是唐山地震震源构造的地表破裂,需要解释该西倾的倾滑断裂带与唐山市内走滑地裂缝带的成因联系。此外,还需要更有说服力的证据排除该地表破裂带是次生构造破裂的可能。建议对控制草泊第四纪凹陷的活动断裂开展调查  相似文献   

17.
龙门山断裂带西南端地壳电性结构   总被引:2,自引:0,他引:2       下载免费PDF全文
在龙门山断裂带中段于2008年5月12日发生了汶川MS 8.0地震,5a之后于2013年4月20日在其西南侧即龙门山断裂带SW段发生了芦山MS 7.0地震。而在汶川地震前,沿龙门山断裂带主体部分存在7a间未发生4.0级以上地震的相对平静期。因此,汶川地震后人们研究了龙门山断裂带的地壳结构及其与汶川地震的成因关系,仅仅相隔5a时间,就在龙门山断裂带的SW段发生了芦山地震,其深部结构和孕震环境以及与汶川地震的关系又成为人们关注的热点科学问题。为了研究龙门山断裂带西南端附近的地壳结构,布置了一条穿越龙门山断裂带西南端附近的大地电磁探测剖面LS6,该剖面位于芦山地震破裂带的西南端。通过采用先进技术对大地电磁数据的分析和二维反演,发现LS6剖面与其东北侧的穿过芦山地震区汶川地震后完成的LMS4剖面的地壳电性结构既有相似性,但也存在明显的差别,其电性结构更复杂。研究表明,尽管2008年发生了汶川地震,但是龙门山断裂带受到的西北侧松潘-甘孜地块向SE的运动和对龙门山断裂带的推挤作用,以及东南侧四川盆地的阻挡作用仍然存在,同时龙门山断裂带西南端及其附近地区的地壳结构更复杂,而且还受到其西南侧川滇地块和鲜水河断裂等变形作用的影响,因此推测芦山地震与汶川地震既是相互独立的2次地震,但也有一定关联。  相似文献   

18.
4.20芦山地震后,有学者在芦山县龙门乡发现一系列的线性裂缝和砖块的旋转变形等"地震地表破裂迹象",由此推测芦山—龙门一线存在隐伏逆断裂,并认为该断裂有可能是此次地震的发震断裂。因此,进一步探讨芦山—龙门一线是否存在潜在的发震断裂,无论是对研究芦山7.0级地震的发震断裂,还是对灾区的重建指导都十分重要。在龙门乡开展了地质灾害调查、跨谷地的地质剖面实测,槽探和人工地震勘探等工作。结果显示:至少在800m深度范围内,不存在芦山-龙门隐伏断裂。此带上的地裂缝等现象不是由断层位错引起,而更可能是地震动在阶地陡坎附近造成的地基或边坡效应所致。  相似文献   

19.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

20.
钻探揭示的黄河断裂北段活动性和滑动速率   总被引:5,自引:2,他引:3       下载免费PDF全文
黄河断裂是银川盆地内展布最长、切割最深的一条深大断裂,也是银川盆地的东边界。由于其北段呈隐伏状,因此,该段的活动性和滑动速率长期未知,影响了对盆地演化和地震危险性的认识。文中选择具有石油地震勘探基础的陶乐镇为研究场点,以人工浅层地震勘探结果为依据,在黄河断裂北段布设了一排钻孔联合剖面,并对标志层进行年代测试,获得了断裂的活动时代和滑动速率。结果表明,黄河断裂北段在晚更新世末期或全新世有过活动,在(28.16±0.12)ka BP 以来的累积位移为0.96m,晚第四纪以来的平均滑动速率为0.04mm/a,该值明显低于南段灵武断层(0.24mm/a);尽管向下切割了莫霍面,黄河断裂晚第四纪活动强度和发震能力均要低于切割相对浅的贺兰山东麓断裂;黄河断裂可能在新生代之前已经强烈活动并深切莫霍面,新生代以来,银川盆地的构造活动迁移分解到以贺兰山东麓断裂为主的多条断裂之上,地壳双层伸展模型可解释银川盆地现今深浅部构造活动间的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号