首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
用岷江都江堰—汶川段晚第四纪阶地面的变形量估算了龙门山断裂带中段的滑动速率。岷江及其支流发育3级晚第四纪河流阶地,阶地面的年龄分别约为10,20,50kaBP。阶地纵剖面在茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂处有明显的垂直变形。断裂活动具有间歇性特点,晚第四纪以来有过3期活动,其起始时间分别为50,20,10kaBP。依据各级阶地面年龄和变形量估算的茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂晚第四纪逆冲滑动速率分别为0.5,0.6~0.3,0.2mm/a;据阶地走滑位错估算的茂汶-汶川断裂和北川-映秀断裂的晚第四纪右旋走滑速率均约为1mm/a。现代河床之下发育很厚的河流堆积物表明,龙门山的构造抬升经历了较为复杂的过程  相似文献   

2.
龙门山断裂带南段第四纪沉积差,断层出露不明显,晚第四纪构造活动性资料零星。为了提高对龙门山断裂带南段构造活动性的认识,探索芦山地震的发震构造,文中在分析龙门山断裂带南段的地貌以及构造演化的基础上,对跨盐井-五龙断裂、大川-双石断裂和芦山盆地的青衣江不同段的6级河流阶地进行了差分GPS连续测量和细致研究,结合对高分辨率航拍影像的地质解译,得到了龙门山断裂带南段青衣江各段的河流阶地横剖面,通过不同河段河流阶地的对比分析,建立了龙门山断裂带南段青衣江河流阶地纵剖面。通过对河流阶地的变形分析,发现龙门山断裂带南段晚第四纪以来,盐井-五龙断裂的平均垂向断错速率为0.6~1.2mm/a,大川-双石断裂没有明显的垂向活动,芦山地震的发震断层控制的山前褶皱最新活动。结合龙门山断裂带南段的地壳深部结构资料和芦山地震的精定位余震资料等,认为芦山地震的发震构造不是大川-双石断裂,而是龙门山断裂带南段的山前盲逆断层和反冲断层。  相似文献   

3.
祁连山作为青藏高原东北缘的重要造山带,是高原向NE方向扩展的最前缘,逆冲和褶皱作用是青藏高原向N扩展的重要构造变形方式。白杨河发育于祁连山内部,向N汇入前陆区酒西盆地。因此,可以通过白杨河阶地研究祁连山北缘的变形特征。通过对白杨河阶地的详细调查与测量,得到如下认识:1)白杨河阶地具有流域分段性,在地形陡变带及盆地内白杨河背斜区发育多级阶地。以阶地级数来说,以牛头山为界,上游发育2—3级阶地,下游发育4—5级阶地。2)从白杨河阶地纵剖面获得昌马断裂的垂直活动速率为(0.32±0.09)mm/a,地壳缩短速率为(0.12±0.09)mm/a;旱峡-大黄沟断裂T5形成以来(约13ka)没有垂直活动;老君庙背斜区T5阶地(约9ka)褶皱变形隆升量为(6.55±0.5)m,缩短量为(3.47±0.5)m,隆升速率为(1.23±0.81)mm/a,缩短速率为(0.67±0.44)mm/a;白杨河背斜开始活动时期约为300kaBP,其170ka以来的平均隆升速率约(0.21±0.02)mm/a,缩短速率为(0.14±0.03)mm/a;3)北祁连山地区在响应青藏高原向N扩展的过程中表现出2种不同的变形特征:在祁连山内部以剪切变形为主,表现为块体侧向挤出;而在祁连山北缘地形陡变带和酒西盆地内部以挤压变形为主,表现为地壳缩短和隆起,并且盆地内构造缩短变形量占总变形量的50%左右。  相似文献   

4.
成都断陷区活动断裂带基本特征及其潜在地震能力的判定   总被引:4,自引:0,他引:4  
唐荣昌  黄祖智 《中国地震》1996,12(3):285-293
成都断陷是龙门山前缘重要的第四纪构造盆地,龙门山前山断裂和龙泉山西坡断裂对断陷盆地的形成和演化有重要的控制作用。晚第四纪时成都断陷遭受北西-南东向的挤压,使断陷盆地边缘和内部的北东,北北东向断裂具逆冲运动性质,并导致龙门山前山断裂,龙泉山西坡断裂和蒲江-新津-成都-德阳断裂上中,强地震的发生,研究表明,上述3条断裂均具有发生中强地震的潜在能力。  相似文献   

5.
兰州庄浪河阶地差分GPS测量与构造变形分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘兴旺  袁道阳 《地震工程学报》2012,34(4):393-397,404
在综合分析兰州庄浪河河流阶地发育和分布特征的基础上,采用高精度差分GPS对Ⅰ~Ⅲ级阶地进行了详细的测量,获得了庄浪河阶地纵横剖面图.结合不同级别阶地年代学资料研究了其构造变形特征,获得了穿越断裂带地区的阶地变形特点、变形带宽度、变形幅度和速率等定量参数.研究表明:兰州庄浪河阶地构造变形主要表现为断裂扩展褶皱模式,阶地变形速率在晚第四纪以来有逐渐加速的特点.  相似文献   

6.
油砂山断裂位于柴达木盆地西南缘英雄岭背斜南翼,英雄岭背斜是柴达木盆地内新构造表现最为强烈的地区,也是柴达木盆地内部褶皱向S扩展的最前缘位置。对油砂山断裂的古地震和晚第四纪活动速率研究有助于理解该地区的构造变形方式和评价地震地质灾害。通过对油砂山山前洪积扇上沿断裂带发育的挤压鼓包进行探槽开挖、油砂山西侧盆地内褶皱陡坎进行测量及晚第四纪冲、洪积地层进行光释光测年,综合分析认为:1)油砂山断裂是1条全新世活动的逆冲断裂,盆地内的褶皱陡坎表明至少晚更新世中晚期以来该断裂在同一地表迹线上持续活动。油砂山探槽揭露到的断层面产状为N62°W/NE∠17°。探槽揭露到了至少2次构造事件,较新的1次事件Ⅱ发生在距今500a以来,垂直断距约0.25m。目前获得的资料还不能确定它就是1977年茫崖西北的M6.4地震,但也不能排除与该地震有关。较老的事件Ⅰ发生在距今1 000~4 000a之间,垂直断距约0.55m。事件发生后的侵蚀作用影响了事件Ⅰ年龄的限定和事件Ⅰ确切次数的判定。2)油砂山断裂晚更新世中晚期以来的垂直活动速率约为(0.38±0.06)mm/a。与该区GPS站点的相对速率相比较表明,油砂山断裂是该区非常重要的1条全新世活动的逆冲断裂,在调节区域构造变形上起到了重要作用。  相似文献   

7.
兰州黄河阶地高精度GPS测量与构造变形研究   总被引:2,自引:5,他引:2       下载免费PDF全文
在综合分析兰州黄河阶地发育和分布特征的基础上,采用高精度差分GPS测量并结合1:1万DEM图形数据资料,获得了黄河兰州段南北两岸阶地平面分布图和纵横剖面对比图。结合本区黄河不同级别阶地年代测试结果,研究了其构造变形特征,获得了穿越断裂带地区的阶地变形特点、变形带宽度、变形幅度和速率等定量参数。结果表明:兰州盆地晚第四纪的构造变形主要以褶皱隆升为主,盆地内的断裂晚第四纪无明显构造活动。  相似文献   

8.
通过卫星影像解译、野外实地调查与数字地形分析,研究了成都盆地南缘构造变形特征及与地貌的响应关系,重点为邛西构造和熊坡背斜的晚第四纪构造变形。结果表明:中更新世是成都盆地南缘地区一个较重要的构造变形阶段,邛西构造与熊坡背斜的发育与演化也主要集中在这一阶段,并导致了古青衣江数次改道,遗留下规模巨大的冲洪积扇——名邛台地。熊坡背斜亚流域盆地的面积—高程积分值(HI值)自SW向NE总体呈逐渐减小的趋势,反映了熊坡背斜主要受到来自南部的动力作用,并呈现自SW向NE扩展变形的过程,显示成都盆地南缘地区流域地貌对其构造变形存在着明显的反馈作用。  相似文献   

9.
继2013年芦山MS7.0地震发生之后,龙门山断裂带南段的地震危险性得到了广泛的关注。为了深化对龙门山断裂带南段晚第四纪活动性的认识,我们对横跨该断裂带的青衣江上游河段开展了河流阶地调查与测量。在卫星影像和高分辨率DEM分析的基础上,基于SCGNSS(Sichuan Global Navigation Satelite System,四川省卫星定位连续运行基准服务平台)对河流阶地进行了精细测量和对比,开展了河流阶地的光释光测年,建立了青衣江上游河流阶地纵剖面图。耿达-陇东断裂、盐井-五龙断裂和小关子断裂(大川-双石断裂西支)均垂直断错了青衣江二级以上阶地,表现为逆冲活动,其晚第四纪平均垂直错动速率分别为0.21~0.30mm/a、0.12~0.21mm/a和0.10~0.12mm/a。晚第四纪以来,大川-双石断裂东支垂直错动不明显,金汤弧形构造带没有活动。通过青衣江河流阶地变形得到龙门山断裂带南段冲断带晚第四纪地壳缩短速率为0.48~0.77mm/a,该缩短速率约为龙门山断裂带中段的一半。结合前人对前陆区构造变形的研究,认为龙门山南段前陆褶皱带可能吸收了一半以上的地壳缩短量。龙门山断裂带南段3条主要分支断裂均为晚第四纪活动断裂,具有发生强震的危险性。  相似文献   

10.
焉耆盆地北缘和静逆断裂-褶皱带第四纪变形   总被引:5,自引:5,他引:0       下载免费PDF全文
焉耆盆地是塔里木盆地东北缘天山山间的重要坳陷区,盆地北缘发育的和静逆断裂-褶皱带是一条现今活动强烈的逆断裂-褶皱带,对其第四纪以来缩短量和隆升量的计算有利于分析该区域的构造活动情况,对缩短速率和隆升速率的估计可以与天山造山带其他区域的活动速率进行横向对比,从而反映出焉耆盆地在天山晚新生代构造变形的作用。在深部资料不足的情况下,对背斜形态完整、构造样式简单的和静逆断裂-褶皱带,利用地表可获得的地层和断层产状,通过恢复褶皱几何形态,计算褶皱的缩短量、隆升量和断层滑动量,得到逆断裂-褶皱带早更新世晚期(1.8Ma)、中更新世(780ka)和晚更新世中期(80ka)以来的缩短量分别为1.79km、0.88km和26m,初步估计的缩短速率分别为0.99mm/a、1.13mm/a和0.33mm/a。显示和静逆断裂-褶皱带自开始形成以来构造活动强度并不一致。与地壳形变观测结果对比,作为南天山东段最主要的坳陷区,焉耆盆地吸收了这一区域(86°~88°E)的大部分地壳缩短,且主要表现为盆地北缘新生逆断裂-褶皱带的强烈变形。  相似文献   

11.
On 20 April 2013, a destructive earthquake, the Lushan MS7.0 earthquake, occurred in the southern segment of the Longmenshan Fault zone, the eastern margin of the Tibetan plateau in Sichuan, China. This earthquake did not produce surface rupture zone, and its seismogenic structure is not clear. Due to the lack of Quaternary sediment in the southern segment of the Longmenshan fault zone and the fact that fault outcrops are not obvious, there is a shortage of data concerning the tectonic activity of this region. This paper takes the upper reaches of the Qingyijiang River as the research target, which runs through the Yanjing-Wulong Fault, Dachuan-Shuangshi Fault and Lushan Basin, with an attempt to improve the understanding of the tectonic activity of the southern segment of the Longmenshan fault zone and explore the seismogenic structure of Lushan earthquake. In the paper, the important morphological features and tectonic evolution of this area were reviewed. Then, field sites were selected to provide profiles of different parts of the Qingyijiang River terraces, and the longitudinal profile of the terraces of the Qingyijiang River in the south segment of the Longmenshan fault zone was reconstructed based on geological interpretation of high-resolution remote sensing images, continuous differential GPS surveying along the terrace surfaces, geomorphic field evidence, and correlation of the fluvial terraces. The deformed longitudinal profile reveals that the most active tectonics during the late Quaternary in the south segment of the Longmenshan Fault zone are the Yanjing-Wulong Fault and the Longmenshan range front anticline. The vertical thrust rate of the Yanjing-Wulong Fault is nearly 0.6~1.2mm/a in the late Quaternary. The tectonic activity of the Longmenshan range front anticline may be higher than the Yanjing-Wulong Fault. Combined with the relocations of aftershocks and other geophysical data about the Lushan earthquake, we found that the seismogenic structure of the Lushan earthquake is the range front blind thrust and the back thrust fault, and the pop-up structure between the two faults controls the surface deformation of the range front anticline.  相似文献   

12.
龙陵-瑞丽断裂(南支)北段晚第四纪活动性特征   总被引:5,自引:0,他引:5       下载免费PDF全文
遥感影像解译和野外地质地貌调查表明,龙陵-瑞丽断裂(南支)北段是以左旋走滑为主兼张性正断的区域性活动断裂。根据一些断错地貌点的大比例尺填图、实地测量及其年代学分析,确定了该断裂为全新世活动断裂,断裂晚更新世以来的平均水平滑动速率为2.2mm/a,平均垂直滑动速率为0.6mm/a;全新世以来的平均水平滑动速率为1.8~3.0mm/a,平均垂直滑动速率为0.5mm/a。断裂晚更新世以来的滑动速率在不同的时间尺度上变化不大,反映了该断裂晚更新世以来的活动强度比较平稳  相似文献   

13.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

14.
汶川M_S8.0地震发震断裂大地震原地重复现象初析   总被引:37,自引:8,他引:29  
在历史记录中,成都和龙门山地区没有发生过类似汶川MS8.0地震强度的地震。那么,在地质记录中是否会存在类似震级的古地震遗迹?作者分别在中央和前山断裂中段的地表破裂带上4个地点开挖了探槽4个和剖面1个,并进行了断错地貌面的实测。文中从几个地点新老地貌面累计变形量、探槽揭露的古地震遗迹等方面讨论汶川地震发震断裂大地震原地重复现象存在的基本事实。结果表明:无论在中央断裂的小鱼洞、擂鼓镇还是前山断裂的白鹿镇、汉旺等地,汶川5.12地震之后Ⅱ级阶地断层陡坎与Ⅰ级阶地陡坎高度基本呈倍数关系,探槽揭露Ⅱ级阶地标志地层(黄砂土层)在断裂两盘的位差也是5.12地震的约2倍,显示在龙门山地区区域Ⅱ级阶地形成之后,汶川5.12地震发生之前,存在一次与汶川MS8.0地震地表变形规模相当的地震事件  相似文献   

15.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.  相似文献   

16.
The Youshashan Fault lies in the south flank of Yingxiongling anticline, southwestern margin of Qaidam Basin. The Yingxiongling anticline is one of the most active neotectonics, situated at the front of folds expanding southward in the Qaidam Basin. Research on the paleoseimology and Late Quaternary slip rate of this fault is important for hazard assessment and understanding tectonic deformation in this area. We excavated a 27-m-long trench across the Youshashan fault where a pressure bridge formed on the Holocene alluvial fans, measured a profile of the fold scarp created by the fault west of the Youshashan mountain, and collected several samples of finer sands for luminescence dating. Analysis of these data shows that(1) The Youshashan Fault is a Holocene active feature. The fold scarp in the basin indicates that this fault has been active along a same surface trace since at least mid-late Pleistocene. At least two paleoseismic events are revealed by trenching, both occurred in Holocene. The latest event Ⅱ in the trench happened after 500a. The current information fails to confidently support that it is the 1977 Mangya M6.4 earthquake, but cannot excludes the possibility of it is related to this earthquake. The other event Ⅰ occurred about between 1 000a to 4 000a. Erosion after the event Ⅰ prevents us to constrain the event age and to identify more events further. (2)The vertical slip rate of the Youshashan fault is about(0.38±0.06)mm/a since mid-late Pleistocene. Comparing with relative speeds of GPS sites across the Yingxiongling anticline suggests that the Youshashan fault is an important structure which is accommodating crustal shortening in this region.  相似文献   

17.
库木库里盆地位于青藏高原北缘,与柴达木盆地一山之隔,是二者的过渡地带,也是高原主体部分向NE扩展的前缘地区;现今构造表现为被3条大型活动构造带(走滑的阿尔金断裂带、东昆仑断裂带和逆冲的祁漫塔格褶皱逆冲系)所夹持。因此,该盆地对于研究青藏高原北缘的构造活动性、活动历史,探讨高原的扩展模式具有十分重要的意义。虽然库木库里盆地南、北两侧均发育活动性很强的大型走滑断裂,但是在盆地中央发育1条大型背斜,走向NWW-SEE,与祁漫塔格褶皱逆冲系和柴达木盆地内的褶皱构造走向一致,说明盆地目前遭受NNE向的挤压。通过对盆地地形横、纵剖面和阶地展布形态的分析,得出背斜有自西向东扩展变形的特征;野外调查和测年结果显示,背斜东段冰川融水形成了大型冰水扇,形成年龄为(87.09±2.31)~(102.4±3.7)ka,进而获得背斜东段自晚更新世以来平均隆升速率的最大值为(2.78±0.28)~(3.28±0.28)mm/a。库木库里盆地整体的活动性很强,在构造上与其北边的柴达木盆地类似,都受控于阿尔金断裂南侧的NNE向的区域挤压作用。  相似文献   

18.
通过野外地质填图、3D扫描仪以及全站仪测量等技术手段,取得了大邑断裂活动时代与最新构造变形样式的初步证据。大邑断裂所在地区白垩纪和新近纪地层的褶曲变形时代应在新近纪末—早更新世,而断裂的最新活动时代是全新世,其最新构造变形样式主要表现为全新世地层的褶皱,在地貌上表现为多个山前鼓丘。这些鼓丘单个平面形态呈椭圆形,沿山前呈雁列状分布,延伸长度为2.5km。根据鼓包的剖面形态,推测大邑断裂为一条全新世活动的盲断裂  相似文献   

19.
The Fodongmiao-Hongyazi Fault (FHF)is one of the most active faults of the northern Qilian thrust fault zone. The 1609 Hongyazi M7 1/4 earthquake occurred on the east segment of the FHF, an area with a complex geometry at the Mayinghe River site. The seismogenic pattern of this earthquake revealed by complex surface ruptures remains unclear. In this paper, we focus on active tectonic deformation around the Hujiatai anticline (HA)in the Mayinghe River site. Combining with topographic survey via dGPS across deformed terraces and alluvial fans, a field survey of the geological section across the HA, the characteristics of the active fold and several sub-faults were constrained. Meanwhile, combined with the seismic reflection profiles passing through the anticline, the correspondence relationship between surface expressions of this tectonic and the deep structure was discussed. According to our research, the HA is a result of northward propagation of the range-front thrust fault F1. At the same time, a thrust fault F2 with dextral strike-slip motion and a thrust fault F4 were formed on the east side and north side of the HA, respectively. These two active faults accommodated local deformation. Trench results and 14C dating reveal that the 1609 Hongyazi M7 1/4 earthquake ruptured the T1 terrace in the Huangcaoba site. Combined with previous field investigations and literature about the 1609 Hongyazi earthquake, we suggest that this earthquake occurred on the range-front fault F1, and the depth of the hypocenter may be about 8~22km.  相似文献   

20.
The Longmenshan fault zone is divided into three sections from south to north in the geometric structure. The middle and northern segments are mainly composed of three thrust faults, where the deformation of foreland is weak. The geometric structure of the southern segment is more complex, which is composed of six fault branches, where the foreland tectonic deformation is very strong. The Wenchuan MS8.0 earthquake occurred in the middle of the Longmenshan in 2008, activating the bifurcation of two branches, the Yingxiu-Beichuan and the Guixian-Jiangyou faults. In 2013, the Lushan MS7.0 earthquake occurred in the southern Longmenshan, whose seismogenic structure was considered to be a blind fault. After the Lushan earthquake, the seismic hazard in the southern Longmenshan has been widely concerned. At present, the studies on active tectonics in the southern Longmenshan are limited to the Dachuan-Shuangshi and the Yanjing-Wulong faults. The Qingyi River, which flows across the southern Longmenshan, facilitates to study fault slip by the deformation of river terraces. Based on satellite imagery and high-resolution DEM analysis, we measured the fluvial terraces along the Qingyi river in detail. During the measurement, the Sichuan network GPS system (SCGNSS)was employed to achieve a precision of centimeter grade. Besides, the optical luminescence dating (OSL)method was employed to date the terraces' ages. And the late Quaternary activities of the six branch faults in the southern Longmen Shan were further analyzed. The Gengda-Longdong, Yanjing-Wulong and the Xiao Guanzi faults (west branch of the Dachuan-Shuangshi fault)all show thrust slip and displaced the terrace T2. Their average vertical slip rates in the late Quaternary are 0.21-0.30mm/a, 0.12-0.21mm/a and 0.10-0.12mm/a, respectively. Since the Late Quaternary, vertical slip of the east branch of the Dachuan-Shuangshi fault was not obvious, and the arc-like Jintang tectonic belt was not active. Crustal shortening rate of the southern Longmenshan thrust fault zone in the late Quaternary is 0.48-0.77mm/a, which equals about half of the middle segment of the Longmenshan. Based on the previous study on the tectonic deformation of the foreland, we consider that the foreland fold belt in the southern Longmenshan area has absorbed more than half of the crustal shortening. The three major branch faults in the southern Longmenshan are active in the late Quaternary, which have risk of major earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号