首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
土壤含水量与N2O产生途径研究   总被引:8,自引:2,他引:6  
土壤含水量变化对N2O产生和排放影响的研究表明,不同含水量情况下,N2O排放也不相同。特别是用乙炔抑制技术证明了在播种前后,气候干燥而土壤含水量较低的情况下,N2O产生主要来自于硝化过程;降雨后,土壤含水量较高时,N2O主要是通过反硝化过程产生;而在农田中等含水量情况下,土壤微生物的硝化和反硝化作用产生的N2O大约各占一半。指出旱作农田N2O产生途径主要取决于土壤水分的控制和调节。  相似文献   

2.
农田和森林土壤中氧化亚氮的产生与还原   总被引:14,自引:2,他引:12  
采用土壤淤浆方法对丹麦农田和山毛榉森林土壤反硝化过程中N2O的产生与还原进行了研究。同时考察了硝酸根和铵离子对反硝化作用的影响。结果表明,森林土壤反硝化活性大于农田土壤,但农田土壤中N2O还原活性大于森林土壤,表现在农田和森林土壤中N2O/N2的产生比率分别为0.11和3.65。硝酸根和铵离子能促进两种土壤中的N2O产生,但可降低农田土壤中的N2O还原速率,与农田土壤相比,硝酸根可降低森林土壤N2  相似文献   

3.
稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响   总被引:75,自引:7,他引:68  
通过对太湖地区稻麦轮作生态系统的N2O排放及土壤湿度进行系统观测和开展一系列模拟实验,研究了降雨和土壤湿度对N2O排放和产生过程的影响.结果表明,春季和秋季麦田N2O排放与降雨量呈明显正相关,但水稻田和冬季麦田的N2O排放不受降雨影响.稻麦轮作周期内的N2O排放较强烈地受土壤湿度制约,土壤湿度为田间持水量的97~100%或84~86%WFPS(土壤体积含水量与总孔隙度的百分比)时,N2O排放最强,低于此湿度范围时,N2O排放通量与土壤湿度呈正相关,反之,则呈负相关.田间N2O排放随土壤湿度的变化形式与模拟条件下培养土壤样品的N2O产生率变化非常相似,但前者的最佳湿度范围比后者窄,而且偏小.  相似文献   

4.
氢醌和双氰胺对种稻土壤N2O和CH4排放的影响   总被引:14,自引:1,他引:13  
通过盆栽试验,研究了脲酶抑制剂氢醌(HQ)、硝化抑制剂双氰胺(DCD)及二者的组合(HQ+DCD)对种稻土壤N2O和CH4排放的影响.结果表明,在未施麦秸粉时,所有施抑制剂的处理均较单施尿素的能显著减少水稻生长期供试土壤N2O和CH4的排放.特别是HQ+DCD处理,其N2O和CH4排放总量分别约为对照的1/3和1/2.而在施麦秸粉后,该处理的N2O排放总量为对照的1/2,但CH4排放总量却较少差别.不论是N2O还是CH4的排放总量,施麦秸粉的都比未施的高出1倍和更多.因此,单从土壤源温室气体排放的角度看,将未腐熟的有机物料与尿素共施,并不是一种适宜的施肥制度.供试土壤的N2O排放通量,与水稻植株的NO-3N含量和土表水层中的矿质N量分别呈显著的指数正相关和线性正相关;CH4的排放通量则与水稻植株的生长量和土表水层中的矿质N量呈显著的线性负相关.在N2O与CH4的排放间,未施麦秸粉时存在着定量的相互消长关系;施麦秸粉后,虽同样存在所述关系,但难以定量化.  相似文献   

5.
一氧化氮(NO)在氮的生物地球化学循环、大气环境化学和全球变暖中起着重要作用。森林土壤是NO的一个重要来源。硝化、反硝化、硝化细菌反硝化以及化学反硝化是森林土壤NO产生的主要途径。当前,关于各个过程对NO排放的相对贡献以及生物和环境因子对各个过程NO产生的影响还缺乏系统性研究。因而,本文旨在综述森林土壤NO产生的主要途径,各途径来源NO的测定方法以及土壤氮循环功能基因和环境因子对不同来源土壤NO排放的影响,并在此基础上指出了研究的薄弱环节与未来研究方向。总体而言,森林土壤NO的排放主要来自硝化和反硝化作用,但是在酸性土壤中不能忽视化学反硝化过程对其排放的影响。在量化各个过程对土壤NO排放贡献时,15N-18O双同位素富集法比传统的硝化抑制剂法能更准确地区分NO的来源。土壤NO的产生是各种生物和非生物过程综合作用的结果,当前有关氮循环功能基因丰度与土壤NO排放关系的研究中,缺乏将氮循环功能基因和土壤各过程产生的NO排放联系起来研究。在探究环境因子对土壤NO排放影响时,更多关注单个环境因子对土壤硝化和反硝化过程来源NO排放的影响,而对硝化细菌反硝化和化学反硝化过程来源NO排放的研究较少,而且也缺乏多个环境因子共同作用对不同过程NO排放影响的研究。  相似文献   

6.
玉米植株对大田温室气体N2O排放的影响   总被引:9,自引:0,他引:9  
利用封闭式箱法对玉米田N2O排放通量的观测表明,大田种植玉米后,对N2O排放产生了很大影响,玉米土壤系统的N2O排放通量大于不种玉米的土壤.此外,植物根系能明显促进土壤中N2O的排放,特别是在玉米生长后期尤为明显.从播种开始到年底,施尿素导致N2O排放为3.3kg·hm-2,玉米植株为0.69kg·hm-2,占总排放量的17.3%.  相似文献   

7.
长白山北坡不同土壤N2O和CH4排放的初步研究   总被引:20,自引:0,他引:20  
用箱法技术原位测定了长白山北坡不同土壤(苔原土、生草森林土、棕色针叶林土和暗棕色森林土)6—8月间的N2O和CH4排放.结果表明,这些土壤既是N2O的源,又同时是CH4的汇.N2O通量变化于6.17—12.33μg·m-2·h-3之间(平均9.37μg·m-2·h-1),CH4通量为-85.63—-7.58μg·m-2·h-1(平均-41.45μg·m-3·h-1),并观察到在N2O排放和CH4吸收之间有着相互消长关系.实验室培养实验表明,最大反硝化作用活性存在于土壤上层(0—6cm);不同土壤的反硝化作用活性明显不同.山地暗棕色森林土的CH4吸收作用也主要发生在土壤的上层(0—12cm).  相似文献   

8.
覆盖措施对雷竹林地土壤硝化和反硝化作用的影响   总被引:1,自引:0,他引:1  
为探讨林地覆盖对雷竹林土壤硝化和反硝化作用的影响,以不覆盖雷竹林为对照,测定了林地覆盖期间(覆盖后30、60、90 d)雷竹林土壤基本理化性质,并用气压分离过程技术(Ba PS)测定了土壤硝化速率和反硝化速率。结果表明:覆盖措施和覆盖时间对雷竹林土壤硝化和反硝化作用均有显著影响,而且两者存在明显的交互作用;覆盖能促进雷竹林土壤反硝化作用,但长时间覆盖会抑制雷竹林土壤硝化作用;覆盖总体上会降低雷竹林土壤硝化速率、反硝化速率与土壤理化性质的相关性程度,并使土壤硝化和反硝化作用的主要环境影响因子趋于多样化和复杂化;覆盖雷竹林土壤硝化速率的主要环境影响因子是土壤含水量、p H值、铵态氮含量和总孔隙度,反硝化速率的主要环境影响因子是土壤p H值、含水量和总孔隙度。林地覆盖会显著影响雷竹林土壤的氮循环过程,可能会增加土壤氮素损失。  相似文献   

9.
东北典型旱作农田N_2O和CH_4排放通量研究   总被引:46,自引:9,他引:37  
应用封闭式箱法技术测定了玉米、大豆田中N2O和CH4全年的通量变化.指出N2O排放有明显的季节变化和明显的日变化.大量的N2O排放发生在作物生长季节中.在冰雪溶化期和收割作物后也有一定量的N2O从土壤中排放.此外,实验结果也指出,玉米和大豆田作为大气CH4源或汇的作用不明显.  相似文献   

10.
设施栽培下土壤中硝化、反硝化作用的研究   总被引:10,自引:0,他引:10  
殷永娴  刘鸿雁 《生态学报》1996,16(3):246-250
利用温室、大棚等园艺设施栽种蔬菜,是当今蔬菜生产的有效措施之一,但由于温室,大棚是一个特殊的环境,加上连作,致使温度室、大棚的土壤逐渐产生障碍,导致作物产量逐渐下降,本文着重从温室、大棚土壤中硝化、反硝化作用进行深入一步探讨,其结果为:温室、大棚中有强烈的硝化作用和较多的NO2^-、NO3^-盐积累,这是温室、大棚作物产量下降的重要原因之一;温室,大棚中反硝化作用强度与土壤中的NO3^-盐含量有关  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号