首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
朱辉  孙家英  彭林彩  赖川  朱朝菊 《广西植物》2017,37(8):1074-1082
通过微波辅助提取技术结合响应面法优化山苍子核仁油提取条件,以期建立更高产率的提取方法。该研究在单因素设计基础上,选取液料比、微波功率、萃取时间、萃取温度4个主要因素,分析这4个因素对山苍子核仁油提取率的影响。结果表明:通过建立多元回归拟合分析,得出山苍子核仁油提取最佳工艺条件为液料比1∶16,萃取温度为69℃,微波功率为337 W,萃取时间为63 min,在此条件下山苍子核仁油提取率为37.42%,与环己烷溶剂回流法相比较提取率提高了30.11%。气质联用仪分析结果显示,山苍子核仁油主要成分有16种占总成分的88.21%,鉴定出10种脂肪酸占总成分的78.24%,饱和脂肪酸有4种占总成分的43.23%,不饱和脂肪酸有6种占总成分的35.01%,脂肪酸中含量最高的为月桂酸(31.36%)。该研究结果表明该方法严谨、可靠,采用微波辅助提取山苍子核仁油是可行的。  相似文献   

2.
微波辅助索氏提取法提取欧李仁油的工艺参数优化   总被引:1,自引:0,他引:1  
为探讨欧李仁油提取的最佳工艺参数,以欧李种仁为材料,粗脂肪提取率为评价指标,采用随机试验设计和L9(3^4)正交试验设计,测定了不同提取剂、浸提时间、浸提温度、料液比、辐射功率、辐射时间对欧李仁油提取率的影响。结果表明:以三氯甲烷为提取剂,微波辅助索氏提取法提取欧李仁油的最佳工艺参数为:辐射功率462 W,辐射时间3 min,提取时间7 h,提取温度80℃,料液比1∶35,欧李仁油提取率为47.37%,比常规索氏提取法提高了18.63%。  相似文献   

3.
对5种方法提取生姜挥发油进行比较研究。采用水蒸气蒸馏法(steam distillation,SD)、酶辅助水蒸气蒸馏法(enzymatic hydrolysis-assisted steam distillation,EHSD)、超声辅助水蒸气蒸馏法(ultrasonic-assisted steam distillation,UASD)、微波辅助水蒸气蒸馏法(microwave-assisted steam distillation,MASD)、压榨法(squeezing,SQ)5种方法提取生姜挥发油,并通过气相色谱-质谱法(GC-MS)测定化学成分。采用R语言平台进行主成分分析(principal component analysis,PCA)和聚类热图分析,比较其成分特征是否存在差异。显微下观察所得生姜药渣的结构差异。水蒸气蒸馏法、酶辅助水蒸气蒸馏法、超声辅助水蒸气蒸馏法、微波辅助水蒸气蒸馏法4种方法得油率分别为0.18%、0.19%、0.21%、0.18%,经GC-MS测定,其所得挥发油成分相似,鉴定化合物59~65种;压榨法得油率为0.10%,鉴定化合物3种,分别为α-姜烯、β-水芹烯和6-姜烯酚。显微下观察,4种蒸馏法所得药渣单位面积下的油细胞数均少于压榨法。生姜挥发性成分可能受酶、超声、微波的作用而产生变化,以致不同提取方法所得挥发油化学成分及相对峰面积具有特征差异。压榨法可简便快捷地提取生姜中的α-姜烯、β-水芹烯及6-姜烯酚。本文为实际应用中生姜挥发油提取方法的选择及生姜的进一步开发利用提供参考依据。  相似文献   

4.
采用正交试验设计,以桑黄菌丝体粗多糖含量为考察指标,用苯酚—硫酸法,分别确定了热水浸提法、微波辅助提取法和超声提取法的最佳工艺。通过极差分析得出:热水浸提法的最优工艺为浸提时间3 h、浸提3次、液料质量比50∶1、浸提温度90℃,粗多糖提取率为2.10%;微波提取法的最优工艺为微波处理15 min、液料质量比50∶1、提取3次,提取率为4.18%;超声提取法的最优工艺为超声30 min、提取2次、液料质量比60∶1、温度60℃、频率60 Hz,提取率为3.02%。微波辅助法与热水浸提法相比,时间缩短,且提取率提高近1倍;与超声提取法相比,时间缩短1/2,但提取率提高40%。因此,微波辅助提取法速度更快、提取效率更高、操作更简便,优于其他2种方法。  相似文献   

5.
探索加热回流法提取薏苡仁油的最佳工艺条件,并对提取过程进行深入探讨。采用单因素法考察溶剂、料液比、药材粒径、提取时间等对薏苡仁油提取率的影响,在此基础上研究其提取动力学。结果表明薏苡仁油较佳的提取条件为采用丙酮作为溶剂,液固比7倍,药材平均粒径0.25 mm,提取3 h。动力学研究表明,粒径较小时(0.25~0.83 mm),薏苡仁油的提取动力学符合二阶溶出动力学模型,即减小药材粒径,可明显增加有效成分的提取率。  相似文献   

6.
提取防风多糖的工艺优化   总被引:2,自引:1,他引:1  
采用超声波强化和微波辅助提取2种方法提取防风多糖,并与传统热水浸提法在多糖的提取率上进行比较。防风多糖超声提取的最佳工艺条件为超声功率1 000 W、提取时间25 min、液固体积质量比为25,防风多糖微波提取的最佳工艺条件为微波功率560 W、液固体积质量比为30、提取时间10 min,在最佳提取工艺下,2种方法的提取率分别为6.103%和7.639%。与传统热水浸提法相比,超声法和微波法提取防风多糖具有迅速、节能、高效、提取率高等诸多优点。  相似文献   

7.
应用超声提取与传统热溶剂回流法提取南瓜子油,通过正交实验法考察了料液比、提取时间和超声功率3个因素对提取率的影响,得到了最佳超声提取工艺条件:料液比为1∶15(w/v),提取时间为0.5 h,超声功率为250 W,优化条件下提取率为50.8%,对照热溶剂回流提取法的提取率49.9%(6.0 h);南瓜子油的GC-MS分析结果显示两种方法对南瓜子油成分无明显影响;超声提取的南瓜子油酸价(1.51 mg·g-1)低于热溶剂回流提取法(3.25 mg·g-1)。上述结果表明超声提取南瓜子油与热溶剂提取法比较具有操作简便、省时和低酸价的优点。  相似文献   

8.
木兰科四种植物种子油的提取及脂肪酸成分分析   总被引:3,自引:1,他引:2  
刘举  陈继富 《广西植物》2013,33(2):208-213
采用超声波辅助提取法和微波辅助提取法同时提取白玉兰、凹叶厚朴、深山含笑和醉香含笑四种木兰科植物的种子油,种子油甲酯化后,运用气相色谱—质谱联用技术测定其脂肪酸成分。结果表明:四种植物种子油的提取率不同,白玉兰平均为27.35%、凹叶厚朴23.34%、深山含笑31.66%,醉香含笑9.27%。不同提取方法所得到的种子油脂肪酸成分和相对含量不同,但四种种子油的主要脂肪酸成分相同,包括油酸、亚油酸、硬脂酸和棕榈酸。  相似文献   

9.
月见草籽油在医药、保健及食品工业领域具有重要价值。本文对超声辅助水酶法提取月见草籽油进行了研究,采用超声及粉碎处理方式对月见草籽进行预处理,确定最佳预处理条件:超声功率300W、超声时间30min、超声温度60℃;采用Alcalase 2.4L碱性蛋白酶进行酶解,利用响应面优化试验,确定最优的月见草籽油脂提取工艺:料液比为5.4(w/w)、酶添加量为1.38(v/w)、酶解温度为62.5℃、酶解时间2.8h,响应面有最优值为84.32%;测定油脂的基本组成及相关品质指标,结果表明,不同提取方法对月见草籽油的皂化值、折射率、色泽的影响不显著,但酸值及磷脂含量均低于溶剂法月见草籽油。优化的工艺简便可行、提取率高,为超声辅助水酶法提取月见草籽油提取工艺的产业化提供理论依据。  相似文献   

10.
本论文采用超声-微波协同提取新工艺,通过单因素实验分别考察提取时间、微波功率、料液比等因素对黄芪多糖提取率及纯度的影响;通过正交实验得出最佳提取工艺参数;通过平行提取实验,与水提法、微波及超声波辅助提取进行比照。得出最佳提取条件为微波功率120 W,提取时间为150 s,料液比1∶25(g/mL)时,黄芪多糖的提取率最高达4.25%,并且证明了超声微波协同提取法的提取效率高于水提法、微波法及超声波法等传统的提取方法。  相似文献   

11.
烟草废料中绿原酸的提取工艺研究   总被引:1,自引:0,他引:1  
讨论了从烟草废料中提取绿原酸的优势和甲醇、乙醇、丙酮、水等不同溶剂经超声波辅助提取绿原酸的效果:研究结果表明,用体积分数40%的甲醇得到的浸提液中,绿原酸质量浓度为2.11mg/mL,比以水为溶剂时高出近50%.不同浓度的甲醇溶液中,体积分数50%的甲醇提取绿原酸的浓度最高。对树脂的吸附动力学分析表明,大孔树脂CN-101对烟草浸提液中绿原酸的吸附遵循Freundlich等温方程,吸附和解析分离所得的绿原酸收率为87.6%.在超声辅助条件下,利用甲醇等有机溶剂提取烟草中的绿原酸,进而用大孔树脂进行吸附分离的方法可行。  相似文献   

12.
The production of carotenoids from Blakeslea trispora cells in a synthetic medium has been reported, with the main products being beta-carotene, lycopene, and gamma-carotene. The effect of biomass pretreatment and solvent extraction on their selective recovery is reported here. Eight solvents of class II and III of the International Conference of Harmonization: ethanol, methanol, acetone, 2-propanol, pentane, hexane, ethyl acetate, and ethyl ether, and HPLC analysis were used for the evaluation of their selectivities towards the three main carotenoids with regard to different biomass pre-treatment. The average C(max) values (maximum concentration of caronoids in a specific solvent) were estimated to 16 mg/L with the five out of eight solvents investigated, whereas methanol, pentane, and hexane gave lower values of 10, 11, and 9 mg/L, respectively. The highest carotenoid yield was obtained in the case of wet biomass, where 44-56% is recovered with one solvent and three extractions and the rest is recovered only after subsequent treatment with acetone; thus, four extractions of 2.5 h are needed. Two extractions of 54 min are enough to recover carotenoids from dehydrated biomass, with the disadvantage of a high degree of degradation. Our results showed that, for maximum carotenoid recovery, ethyl ether, 2-propanol, and ethanol could be successfully used with biomass without prior treatment, whereas fractions enriched in beta-carotene or lycopene can be obtained by extraction with the proper solvent, thus avoiding degradation due to time-consuming processes.  相似文献   

13.
薏苡仁油脂的微商热重分析   总被引:1,自引:0,他引:1  
本文采用热重法比较了薏苡仁油与豆油的稳定性差异.结果表明,热稳定性及氧化稳定性顺序为氢化薏苡仁油>混合薏苡仁油>精炼薏苡仁油>精炼豆油,这主要取决于各自脂肪酸的组成.微商热重法简便、灵敏,还可用于鉴别薏苡仁油质量.  相似文献   

14.
There are many published studies presenting ethanol and acetone as PHAs‐poor solvents, where these two solvents are shown to dissolve <2% (w/v) of PHAs at low temperatures. In this study, the suitability of ethanol and acetone for the recovery of PHB at different temperatures (from room temperature to near boiling point) in Cupriavidus necator was investigated. Experiments were performed using response surface methodology to examine the effects of different temperatures and heating incubation times on recovery percentage using the two solvents. The highest recovery percentage (92.3%) and product purity (up to 99%) were obtained with ethanol‐assisted extraction at 76°C for 32 min of incubation time. Under these conditions the extracted PHB exhibited a molecular mass of 1.2 × 106. The present strategy showed that at temperatures near its boiling point, ethanol, as a nonhalogenated solvent, represents a good alternative to halogenated solvents, like chloroform, when PHB recovery is concerned. DSC analysis showed good thermal properties for ethanol‐ and acetone‐extracted biopolymers. GC and 1H NMR analysis confirmed the extracted biopolymer to be polyhydroxybutyrate of good purity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1480–1486, 2016  相似文献   

15.
The triphenyl tetrazolium chloride (TTC) reduction assay was evaluated and improved with maize seed (Zea mays cv. Zhengdan958). The reduced TTC in embryo was extracted with three kinds of organic solvents: trichloroacetic acid (TCA)/acetone, ethanol, and acetone. The absorbance spectra of the three extracts were similar, with a maximum at 485 nm. The efficiency of TCA/acetone in extracting the reduced TTC was higher than that of acetone and ethanol. A negative correlation between TTC reduction and malondialdehyde content in embryo was demonstrated. The TCA/acetone extraction may be used as a routine protocol for TTC reduction assay of seed vigor in cereal (e.g. maize, rice, wheat and barley) seeds.  相似文献   

16.
Abstract

The production of carotenoids from Blakeslea trispora cells in a synthetic medium has been reported, with the main products being β-carotene, lycopene, and γ-carotene. The effect of biomass pretreatment and solvent extraction on their selective recovery is reported here. Eight solvents of class II and III of the International Conference of Harmonization: ethanol, methanol, acetone, 2-propanol, pentane, hexane, ethyl acetate, and ethyl ether, and HPLC analysis were used for the evaluation of their selectivities towards the three main carotenoids with regard to different biomass pre-treatment. The average Cmax values (maximum concentration of caronoids in a specific solvent) were estimated to 16 mg/L with the five out of eight solvents investigated, whereas methanol, pentane, and hexane gave lower values of 10, 11, and 9 mg/L, respectively. The highest carotenoid yield was obtained in the case of wet biomass, where 44–56% is recovered with one solvent and three extractions and the rest is recovered only after subsequent treatment with acetone; thus, four extractions of 2.5 h are needed. Two extractions of 54 min are enough to recover carotenoids from dehydrated biomass, with the disadvantage of a high degree of degradation. Our results showed that, for maximum carotenoid recovery, ethyl ether, 2-propanol, and ethanol could be successfully used with biomass without prior treatment, whereas fractions enriched in β-carotene or lycopene can be obtained by extraction with the proper solvent, thus avoiding degradation due to time-consuming processes.  相似文献   

17.
The extractability of chlorogenic acid from defatted sunflower seed flour in water and salt solutions at different pH values and also in aqueous organic solvents was determined. It increased with increase in pH and at pH 8 in water nearly 70% chlorogenic acid was removed in a single extraction, while NaCl did not increase the extraction, and, MgCl2 and CaCl2 increased it, especially at higher concentrations. Methanol, ethanol, isopropanol and acetone, at 20% concentration in water, caused the maximum extraction of polyphenol. These organic solvents without added water were poor solvents for the extraction of polyphenol from the flour.  相似文献   

18.
The feasibility of employing a non-ionic surfactant (Triton X-100) as an alternative and effective solvent for the microwave-assisted extraction of glycyrrhizic acid and liquiritin from liquorice root has been demonstrated. When compared with commonly used solvents, 5% Triton X-100 yielded higher extraction efficiency than aqueous solutions of ethanol or methanol. Under optimal conditions, i.e. 5% Triton X-100 (v/v) and microwave-assisted extraction for 3-5 min at 100 degrees C, the percentage extraction of active ingredients reached the highest value. The pre-concentration factor for the glycyrrhizic acid and liquiritin was about 13, and the cloud-point extraction recoveries for the two ingredients were 98.4 and 96.1%, respectively. The results showed that the coupling of microwave-assisted extraction and cloud-point extraction could be employed as a new and effective approach for the rapid extraction and pre-concentration of pharmacologically active ingredients from liquorice root without disturbing the subsequent chromatographic analysis.  相似文献   

19.
Solvolysis of oil palm empty fruit bunches (EFB) fibres using different solvents (acetone, ethylene glycol (EG), ethanol, water and toluene) were carried out using an autoclave at 275°C for 60 min. The solvent efficiency in term of conversion yield was found to be: EG>water>ethanol>acetone>toluene. The liquid products and residue obtained were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass selectivity. The obtained results showed that the chemical properties of the oil product were significantly affected by the type of solvent used for the solvolysis process. The higher heating value (HHV) of oil products obtained using ethanol is ~29.42 MJ/kg, which is the highest among the oil products produced using different solvents. Water, ethanol and toluene yield major phenolic compounds. While EG favors the formation of alcohol compounds and acetone yields ketone and aldehyde compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号