首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
风机齿轮箱振动信号成分复杂,而经验模态分解(EMD)在故障诊断中存在模态混叠和端点效应问题.针对此问题,研究了一种EEMD样本熵和高斯径向基核函数的SVM分类器的滚动轴承故障诊断方法.以风机齿轮箱滚动轴承为研究对象,提取了内圈故障、外圈故障、滚动体故障和正常轴承4种状态振动信号,利用EEMD和小波分别对振动信号分解降噪并筛选主要IMF分量;计算前4阶IMF分量的样本熵作为特征向量;最后将特征向量输入高斯径向基核函数的SVM模型进行故障识别.结果表明:EEMD算法对端点效应和模态混叠都有一定抑制作用,EEMD样本熵和SVM相结合可有效识别滚动轴承故障类型,故障识别率为97.5%,为工程应用中风机齿轮箱滚动轴承故障诊断提供参考.  相似文献   

2.
《轴承》2017,(1)
针对转盘轴承故障振动信号非线性、非平稳性的特点,提出了一种将经验模态分解与隐马尔可夫模型相结合的故障诊断方法。首先对故障信号进行经验模态分解,提取固有模态函数的能量作为故障特征向量;然后将故障特征向量输入HMM分类器进行模式识别,输出各状态的似然概率;最后,以最大似然概率所对应的故障状态作为诊断结果。试验表明:该方法能够有效、准确地识别转盘轴承的故障类型,但训练样本数及故障类型数对HMM的诊断精度都有一定的影响。  相似文献   

3.
针对齿轮振动信号的传递路径复杂,噪声污染严重,故障特征信息微弱等问题,提出了基于变分模态分解和自适应神经模糊推理系统(Adaptive Neuro-Fuzzy Inference System,ANFIS)的故障诊断方法。将原始振动信号利用变分模态分解得到不同尺度的本征模态函数后,通过提取各模态函数的排列熵,构造出表征模态分量信息的特征向量,并将提取的特征向量输入自适应神经模糊推理系统进行训练,建立齿轮故障诊断模型。最后通过齿轮实验故障数据对模型进行验证,并与支持向量机(Support Vector Machine,SVM)识别方法进行对比,结果表明,提出方法具有很强的学习能力,能够有效地对齿轮故障进行诊断,提高故障识别的准确率,识别效果明显优于SVM。  相似文献   

4.
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法.首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后,对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;最后,将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型.试验结果表明,即使在小样本情况下,基于EEMD奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型.  相似文献   

5.
煤矿机械齿轮传动过程中,齿轮振动信号因摩擦力、刚度非线性等因素表现出非平稳特征的同时还受工况现场的强噪声干扰,如何在强噪声背景下,有效提取故障信息、识别故障类型是该类故障诊断的关键。提出一种强噪声背景下基于振动信号分析的齿轮故障诊断方法,该方法包括小波阀值降噪处理、总体经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)熵特征提取、概率神经网络(Probabilistic Neural Network,PNN)识别三个过程。利用小波阀值降噪对采集到的振动信号进行去噪处理;对去噪后信号进行EEMD分解,得到一组消除模态混叠的固有模态函数(Intrinsic Mode Function,IMF)分量,并提取前3个IMF分量的样本熵特征作为故障特征信息;最终结合PNN实现强噪声背景下的齿轮故障诊断。实验结果表明:文中提出的方法可以实现强噪声背景下齿轮故障的准确识别,识别率可以达到90%以上,是一种有效的齿轮故障识别方法。  相似文献   

6.
为了准确识别刀具磨损状态,提出一种细菌觅食算法(BFA)优化集合经验模态分解(EEMD)并与隐马尔可夫模型(HMM)结合的刀具故障诊断方法。首先利用BFA优化EEMD的白噪声幅值系数和总体平均次数,通过设置优化得到的最优参数,将降噪后的信号经EEMD分解为一系列本征模态分量(IMF);再依据峭度和相关系数重构信号;最后从重构信号中提取特征向量作为观测序列输入已训练好的HMM分类器中进行故障诊断。通过对刀具实验数据的分析,验证了此方法的可靠性和准确性。  相似文献   

7.
基于EEMD和THT的齿轮故障诊断方法   总被引:1,自引:0,他引:1  
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)和TeagerHuang变换的齿轮箱故障诊断方法,该方法首先运用EEMD方法,将振动信号分解成不同特征时间尺度的单分量固有模态函数,然后用Teager能量算子计算各固有模态函数的瞬时频率和瞬时幅值,得到Teager-Huang变换时频谱.齿轮箱齿轮裂纹故障振动试验信号的研究结果表明,Teager-Huang变换时频谱优于Hilbert-Huang变换时频谱,能有效识别齿轮故障.  相似文献   

8.
《机械传动》2016,(6):126-131
针对齿轮振动信号非线性非平稳特性,为避免传统"时-频"分析方法在表征设备状态时的不足和样本数量少易造成故障辨识模型"欠学习"的问题,提出一种基于峭度、本征模式分量(Intrinsic mode function,IMF)能量两类特征和最小二乘支持向量机(Least squares support vector machine,LS-SVM)的齿轮故障诊断方法。首先,对所测齿轮振动信号在集合经验模式分解(Ensemble empirical mode decomposition,EEMD)的基础上提取有效IMF分量计算其能量特征和峭度值,据此构建时频域两类特征向量;其次,将融合后的齿轮正常、齿根裂纹、断齿3种状态下的时频域两类特征向量作为输入,基于LS-SVM建立齿轮故障诊断模型,进行齿轮故障识别。实验结果表明,该方法能够准确地识别齿轮的工作状态,与基于BP、SVM的故障诊断模型相比,其具有更高的识别率,为齿轮状态识别和故障诊断提供了一种新途径。  相似文献   

9.
齿轮故障信号具有不平稳特性,故障信号特征向量难提取,典型的齿轮故障数据样本少。针对这些问题,提出基于总体平均经验模式分解(EEMD)、模糊熵和支持向量机(SVM)相结合的诊断方法。首先通过传感器采集得到加速度信号,然后,通过EEMD降低模态混叠,并将加速度信号分解成多个稳定的本征模态函数信号(IMFs)。其次,利用模糊熵能够表现信号复杂程度并且稳定的性质,取多个稳定IMFs的前几项计算模糊熵。因为SVM能够在小样本集情况下建立决策规则,所以将IMFs的前几项模糊熵值作为特征向量输入SVM训练。最后,SVM算法与常用神经网络比较,对样本训练、测试并诊断故障,说明SVM算法优于神经网络。齿轮故障诊断实验结果表明,所提出的方法诊断准确率达92.5%,可实现齿轮故障信息提取和齿轮故障的有效诊断。  相似文献   

10.
针对滚动轴承故障信号非线性和非平稳的特点,为准确识别滚动轴承的故障类型,提出了一种基于隐马尔可夫模型(HMM)并利用布谷鸟搜索(CS)优化变分模态分解(VMD)的滚动轴承故障诊断新方法。首先,利用CS分别优化VMD的模态分解个数K和二次惩罚因子α;然后,设置寻优得到的最佳参数组合,将故障信号经VMD分解为一系列本征模态函数分量(IMFs);最后,依据相关系数重构信号,并从重构信号中提取特征向量输入HMM模型中训练及识别。通过对实验采集的轴承故障振动信号的分析,验证了此方法的有效性和准确性。  相似文献   

11.
针对齿轮箱故障振动信号的不平稳非线性冲击行为,本文提出了一种基于经验模态分解的特征值提取及多特征支持向量机的智能诊断方法。在电机频率分别取30 Hz、35 Hz、40 Hz;载荷分别取0 N∙M、15 N∙M、30 N∙M;采样频率为1500 Hz条件下,进行齿轮正常状态、齿面磨损和齿轮裂痕故障模拟实验。试验结果表明:该创新方法在有限样本数据分析中可以准确、有效地对齿轮箱的工作状态和故障类型进行分类,且支持向量机在故障诊断中使用方便,可以提高诊断的精确性,在齿轮箱故障诊断或类似振动信号的检测应用中具有很强的实用性。  相似文献   

12.
为了消除噪声对齿轮传动系统故障特征提取的影响,提出了一种基于集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)和时频峰值滤波(time-frequency peak filtering,简称TFPF)相结合的降噪方法。针对TFPF算法在窗长的选择方面受到限制的问题,采用了EEMD方法对其进行改进,使得信号在噪声压制和有效信号保真两方面得到权衡;含噪声的信号经过EEMD分解后,得到一系列频率成分从高到低的本征模态函数(intrinsic mode functions,简称IMFs),计算出各IMFs间的相关系数,判断需要滤波的IMFs。对不同的IMFs选择不同的窗长进行TFPF滤波,把过滤后的IMFs和剩余的IMFs重构得到最终的降噪信号。用模拟仿真信号和齿轮齿根故障信号对该方法进行验证,可见EEMD+TFPF能有效地去除噪声,成功提取齿根裂纹故障特征。  相似文献   

13.
针对齿轮故障的非线性、非稳定性特点和单个分类器在故障诊断中准确率低的问题,提出了一种基于变分模态分解(VMD)和随机森林(RF)的齿轮故障识别方法。首先,采用变分模态分解将振动信号分解成有限个本征模态函数(IMFs),并与总体平均经验模态分解对比其分解效果;其次,计算各模态函数的能量熵,将能量熵作为评判齿轮状态的标准,构建特征向量;最后,将特征向量输入随机森林进行故障分类。结果表明,与支持向量机(SVM)识别方法对比,该方法具有较强的学习能力以及较高的诊断精度。  相似文献   

14.
针对齿轮故障信号常伴有大量噪声,故障特征难以提取的问题,提出一种基于最大相关峭度解卷积(MCKD)和改进希尔伯特-黄变换(HHT)多尺度模糊熵的故障诊断方法。首先采用MCKD算法对采集到的齿轮振动信号进行降噪处理,以提高信号的信噪比;然后利用自适应白噪声完备经验模态分解(CEEMDAN)对降噪后信号进行分解,获得一系列不同尺度的固有模态函数(IMF),并通过相关系数-能量的虚假IMF评价方法选取对故障敏感的模态分量;最后计算敏感IMF分量的模糊熵,将获得的原信号多尺度的模糊熵作为状态特征参数输入最小二乘支持向量机(LS-SVM)中,对齿轮的故障类型进行诊断。实测信号的诊断结果表明,该方法可实现齿轮故障的有效诊断。  相似文献   

15.
针对滚动轴承振动信号非平稳非线性的特征,提出一种基于加权排列熵和差分进化算法优化极限学习机(DE-ELM)的滚动轴承故障诊断方法。首先利用自适应噪声的完全集合经验模态分解处理轴承振动信号得到固有模态函数(IMF),然后计算主要IMF分量的加权排列熵组成故障特征向量,最后利用差分优化算法(DE)优化极限学习机隐含层输入权值和偏置,并将故障特征向量作为DE-ELM的输入。实验证明,加权排列熵能够精确提取故障特征,DE-ELM算法能有效提高故障分类精度。与多种方法相比,该方法更加准确可靠。  相似文献   

16.
为充分利用振动信号进行故障辨识,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵判据的滚动轴承故障诊断方法。首先,对滚动轴承的振动信号进行EEMD分解获得若干个本征模态函数(intrinsic mode function,简称IMF),并根据一种IMF分量故障信息含量的评价指标(即峭度、均方差和欧氏距离)选出能够表征原始信号状态的分量进行信号重构;其次,利用奇异值分解技术对重构信号进行处理,结合信息熵算法求取其奇异值熵;最后,利用奇异值熵的大小判断滚动轴承的故障类别。用美国西储大学滚动轴承振动信号对所述方法进行验证的结果表明,相比传统的EMD奇异值熵故障诊断方法,本方法能够清晰的划分出滚动轴承不同工作状态的类别特征区间,而且具有更高的故障诊断精度。  相似文献   

17.
针对转子振动信号的非平稳性以及微弱故障特征难以提取的问题,提出一种基于集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)的奇异值熵和流形学习算法相结合的故障特征提取方法。首先,对原始振动信号进行EEMD分解,得到若干本征模态函数(intrinsic mode function,简称IMF)分量,根据峭度 欧式距离评价指标选取故障信息丰富的敏感分量,组成初始特征向量,求其奇异值熵;其次,利用近邻概率距离拉普拉斯特征映射算法(nearby probability distance Laplacian eigenmap,简称NPDLE)对奇异值熵组成的特征矩阵进行降维处理;最后,将得到的低维特征子集输入到K-近邻(K-nearest neighbor,简称KNN)中进行模式辨识。用一个双跨度转子实验台数据集和Iris仿真数据集对所提方法进行了验证,结果表明,IMF奇异值熵和NPDLE相结合的方法可以有效地实现转子故障特征提取,提高了故障辨识的准确性。  相似文献   

18.
基于EEMD能量熵和支持向量机的轴承故障诊断   总被引:2,自引:0,他引:2  
提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和支持向量机(Support Vector Machine,SVM)的轴承故障诊断方法。首先通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);轴承发生不同的故障时,信号在不同频带内的能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断轴承的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于轴承的故障诊断。  相似文献   

19.
基于EMD解调的齿轮裂纹早期故障诊断研究   总被引:1,自引:0,他引:1  
齿轮轮齿发生早期裂纹时,裂纹故障信号十分微弱。为了有效提取早期裂纹故障特征,文中提出基于经验模式分解(empirical mode decomposition,EMD)的早期故障诊断方法。该方法首先去除振动信号中的啮合基频及其谐波成分,得到残余信号,然后针对残余信号进行基于EMD解调分析和处理。仿真及工程实例分析结果表明,所提方法能成功地将齿轮早期裂纹故障信息从复杂的振动中提取出来,更有利于及早发现故障,并判断故障的严重程度。  相似文献   

20.
实际工况中滚动轴承故障的振动信号为非线性,非平稳的信号。为了对滚动轴承的故障做出准确识别,根据轴承故障信号的特点,在此提出一种用全矢谱和EEMD相结合来提取故障特征指标,然后利用隐马尔科夫模型对滚动轴承故障进行分类的新方法。首先对实验得到的滚动轴承同源双通道振动信号进行EEMD分解,得到数个IMF分量,选取相关性较高的分量进行全矢融合。然后提取与故障类型相对应的故障特征频率下的幅值作为滚动轴承故障分类的指标,并利用HMM方法进行训练和识别,从而区分出不同的故障类型。最后,利用实验得到的轴承故障信号进行测试,实验结果表明,该方法可以对滚动轴承故障做出较为准确的识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号