首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对目前无铅电子封装中主流应用的Sn3.0Ag0.5Cu钎料,研究了其直径为600~60μm的焊球在开孔型Cu基底(焊盘)上260℃恒温回流不同时间(10~300s)形成跨尺度凸点结构Sn3.0Ag0.5Cu/Cu微互连焊点时界面金属间化合物(IMC)的生长与演化行为,以及跨尺度微焊点的剪切性能与断裂行为。研究结果表明,焊球直径大于200μm时焊点界面IMC生长速率随其尺寸减小而增大,而焊球直径小于200μm时焊点界面IMC生长速率随焊球直径减小呈减小趋势。对微焊点界面显微组织演化的分析表明,界面IMC的粗化生长过程随回流时间延长依次经历了奥斯瓦尔德熟化生长及晶粒吸附与晶界迁移生长两个阶段,且其生长阶段的转变随焊点尺寸减小而更早发生。准静态剪切加载条件下的试验结果表明,微焊点强度随其尺寸减小而增加,而恒温回流时间增加时(10~300 s)同尺寸微焊点的剪切强度并未出现明显变化,但回流时间对大尺寸焊点剪切断裂位置有明显影响。  相似文献   

2.
将直径分别为200,300,400μm的Sn-3.0Ag-0.5Cu焊球在化学镍/钯/金(ENEPIG)焊盘上进行多次(1,3,5,7次)钎焊回流形成Sn-3.0 Ag-0.5 Cu/ENEPIG焊点,并对回流3次的焊点进行不同温度(75,100,125℃)的时效处理,研究了焊球尺寸对钎焊回流及时效处理后焊点界面组织及剪切强度的影响.结果表明:钎焊回流和时效处理后,焊点界面金属间化合物层的厚度及焊点的剪切强度均随焊球直径的增大而降低,二者表现出明显的尺寸效应;在焊球尺寸相同的条件下,回流次数的增加和时效温度的升高均会导致界面金属间化合物层厚度的增加,以及焊点剪切强度的降低.  相似文献   

3.
本文以Cu/Sn/Cu-xZn(x=0,5,20 wt.%)微焊点为研究对象,探究Zn含量对其在等温和温度梯度下回流时液-固界面反应的影响.等温回流时,微焊点两端界面金属间化合物(Intermetallic compound,IMC)呈对称性生长,且随着Zn含量增加,两端界面IMC厚度略有减小,表明在Cu基体中添加Zn...  相似文献   

4.
BGA结构无铅微焊点的低周疲劳行为研究   总被引:2,自引:0,他引:2  
基于塑性应变能密度概念提出微焊点低周疲劳裂纹萌生、扩展和寿命预测模型,阐明其与连续介质损伤力学的联系,评估应力三轴度对预测模型的影响,并通过试验和数值计算相结合的方法确定出微米尺度球栅阵列(Ball grid array,BGA)结构单颗Sn3.0Ag0.5Cu无铅焊点(高度为500~100 μm,焊盘直径为480 μm)疲劳裂纹萌生和扩展模型中的相关常数。研究结果表明,疲劳裂纹萌生和扩展循环数与每个循环所产生的塑性应变能密度均呈幂函数关系;应力三轴度会影响疲劳裂纹扩展速率,并最终影响焊点的疲劳寿命;应力三轴度与加载方式有关,拉伸载荷下焊点的应力应变行为受异种材料界面和封装结构力学约束作用的影响,应力三轴度随焊点高度降低而明显升高;而剪切载荷作用下焊点中的力学约束十分有限,焊点高度变化对应力三轴度的影响非常小;测得的高度为100 μm焊点的疲劳裂纹扩展相关常数可以很好地用于预测其他不同高度焊点的疲劳寿命,表明所提出的预测模型可以有效地减小由几何结构和体积变化造成的塑性应变能集中现象对焊点疲劳寿命的影响。  相似文献   

5.
无铅微互连焊点力学行为尺寸效应的试验及数值模拟   总被引:6,自引:2,他引:4  
采用高精度微拉伸试验和有限元数值模拟方法研究不同微尺度的Sn-Ag-Cu无铅钎料模拟互连焊点力学行为和性能演变的尺寸效应。结果表明,当焊点高度恒定(225μm)而焊点直径逐渐减小(475~200μm)时,拉伸断裂强度显著提高且远高于体钎料的抗拉强度,断裂应变也逐渐增加;焊点的断裂位置及模式由较大直径时的界面低延性断裂转变为小直径时焊点中间部位的大变形颈缩断裂。模拟结果表明,由于焊点内力学拘束水平的不同,小直径焊点的界面应力较低且最大应力分布在焊点中间部分,易导致断裂发生在焊点中部,接头强度应较高;而大直径焊点中最大应力处于焊点界面,易导致界面金属间化合物层在较低外加应力下起裂,焊点断裂强度应较低。  相似文献   

6.
《机械强度》2016,(4):744-748
建立了微尺度球栅阵列焊点三点弯曲应力应变有限元分析模型,在三点弯曲加载条件下,分析了焊点直径、焊点高度、焊盘直径和弯曲加载速率对焊点弯曲应力应变的影响。结果表明:焊点内最大弯曲应力应变随焊点直径、焊点高度和弯曲加载速率的增大而增大、随焊盘直径的增大而减小;在置信度为90%时,焊点直径对焊点内最大弯曲应力具有显著影响,焊点高度和焊盘直径对最大弯曲应力影响不显著,焊点直径对最大弯曲应力产生影响最大、焊盘直径对最大弯曲应力产生影响次之,而焊点高度对最大弯曲应力产生影响最小。  相似文献   

7.
时效对Sn-3.8Ag-0.7Cu/Cu焊料接头的组织和拉伸性能的影响   总被引:2,自引:0,他引:2  
研究Sn-3.8Ag-0.7Cu/Cu焊料接头界面的微观组织在150℃时效不同时间后的演变过程,对时效不同时间的试样进行抗拉强度测定,并在扫描电镜下进行动态拉伸原位观察和拉伸断口的形貌观察.结果表明,Sn-3.8Ag-0.7Cu/Cu焊料接头试样在焊后的界面上形成扇贝状的Cu6Sn5金属间化合物(intermetallic compound,IMC)层,随着时效时间的增加,界面IMC的厚度增加,Cu6Sn5扇柱变长变粗,最后离开界面层进入焊料, 时效480 h后在焊料和Cu6Sn5界面析出Ag3Sn相.拉伸实验结果表明,焊料接头的强度在时效初期略有增加,时效48 h后强度逐渐下降;动态拉伸结果表明,时效初期断裂发生在焊料基体内部,随着时效时间的增加,断裂发生的位置逐渐向界面转移,在时效480 h后断裂完全发生在界面化合物层.  相似文献   

8.
电子器件的微型化对钎焊界面的可靠性提出更高的要求,深入研究钎焊界面金属间化合物(Intermetallic compound,IMC)的形貌演变和生长机制具有重要意义.金属Cu具有优良的导电导热性能,在微电子封装行业中广泛应用为基体材料.在钎焊回流过程中,Cu基体与Sn钎料发生界面反应生成IMC,由于IMC具有较高脆性...  相似文献   

9.
研究混装球栅阵列(Ball grid array,BGA)回流焊后产生的残余应力对热循环寿命产生影响。根据Sn63Pb37/Sn3.0Ag0.5Cu均匀混装BGA封装实体,建立有铅和混装BGA封装体ANSYS有限元模型。通过加载不同峰值温度(220~265℃)和不同降温速度(1~6℃/s)的回流温度曲线后,得到BGA封装体焊点残余应力、应变。随后选取峰值温度243℃、降温速度3℃/s条件下的回流焊后BGA封装体模型施加热循环载荷,根据修正Coffin-Manson方程预测焊点寿命。研究结果表明:回流焊中降温速度对焊后应力占主导因素,应力降温速度的增加逐渐由27.9 MPa增加到32.5 MPa,而峰值温度对焊后应变影响明显;热循环分析中BGA焊球左上角区域始终处于高应力应变状态,均匀混装BGA寿命稍低于SnPb焊点BGA;回流焊工艺后进行热循环加载结果表明残余应力对Sn63Pb37/Sn3.0Ag0.5C均匀混装BGA寿命影响不大。  相似文献   

10.
采用基于动态力学分析仪(DMA Q800,TA-Instruments)的精密蠕变试验,针对直径400 μm、高250 μm的Cu/Sn-3.0Ag-0.5Cu/Cu无铅微尺度焊点,研究了其在10MPa恒定应力和不同温度(100℃、110℃、120℃)以及100℃恒定温度和不同应力(8 MPa、10MPa、l2 MPa...  相似文献   

11.
《机械强度》2016,(4):828-832
建立了片式元器件无焊缝焊点有限元分析模型,研究了热循环加载条件下焊盘长度、焊盘宽度、焊点体积和焊点材料对焊点热循环应力应变的影响。结果表明:热循环加载条件下,片式元器件无焊缝焊点内的应力应变大于有焊缝焊点;在只单一改变焊盘长度、焊盘宽度和焊点体积的前提下,无焊缝焊点内的最大应力应变随焊盘长度和焊点体积的增大而增大、随焊盘宽度的增大而减小;对于Sn63Pb37、Sn62Pb36Ag2、SAC305和SAC387这四种焊料,采用无铅焊料SAC305的无焊缝焊点内的最大应力应变最小。  相似文献   

12.
采用SEM、EDS和拉伸-剪切试验等方法研究了微量稀土元素钕对Sn-6.5Zn-xNd(x=0,0.1,0.5)钎料/铜焊点界面组织,重点是界面金属间化合物(IMC)特征及结合性能的影响。结果表明:在Sn-6.5Zn合金中添加微量钕具有明显的变质作用,能够促进界面形成均匀细密的Cu5Zn8IMC层;钕添加量的增加对界面IMC尺寸与分布没有产生明显影响;钕添加量为0.1%(质量分数,下同)时能显著改善钎料/铜焊点结合性能,而当添加量为0.5%时,界面处稀土化合物的聚集会导致焊点结合性能下降。  相似文献   

13.
聚合物熔体微尺度剪切黏度测量方法与黏度模型   总被引:2,自引:1,他引:2  
研究微尺度效应下聚合物熔体黏度时,发现不同入口修正方法获得的剪切黏度随特征尺寸变化的规律不同,这对于聚合物微成型理论和技术尤为重要。采用直径分别为1 000μm、500μm、350μm的毛细管口模,在相同试验条件下分别用零口模法和Bagley法两种入口修正方法,研究高密度聚乙烯(High density polyethylene,HDPE)、短链支化的聚丙烯(Polypropylene,PP)、聚甲基丙烯酸甲脂(Polymethylmethacrylate,PMMA)和聚苯乙烯(Polystyrene,PS)四种材料的剪切黏度变化规律。结果发现,两种方法获得的PMMA和PS黏度随口模直径变化的规律相反,指出传统入口修正方法在测量微尺度黏度时存在局限。基于入口收敛流动特征,提出一种考虑微尺度效应下压力影响的测量方法,并用该方法给出四种材料剪切黏度随口模直径变化的真实规律。试验剪切速度范围内,四种材料剪切黏度均随口模直径的减小而减小,平均变化幅度为9.9%~38.3%,并从分子结构角度揭示四种材料黏度变化程度不同的机理。基于黏度变化规律,采用唯象性方法建立适用于宏—微观尺度下的黏度模型。试验结果表明该模型的理论预测结果与试验结果平均误差小于3.7%,验证了模型的正确性和有效性。  相似文献   

14.
采用单辊法制备了快速凝固态Sn2.5Ag0.7Cu钎料合金,在相同钎焊工艺条件下,用扫描电镜及能谱仪、拉伸试验机研究了普通和快速凝固态钎料对紫铜板钎焊接头的组织、断口形貌、界面化合物和接头性能。结果表明:与普通钎料相比,快速凝固态钎料钎焊接头组织细化,初生β-Sn相尺寸减小而数量增多、共晶组织明显减少,并且初生相与共晶组织界线变得模糊;剪切断裂时形成的韧窝更多,钎焊接头的韧性得到提高。  相似文献   

15.
钎焊工艺对Au-Sn/Ni焊点组织及力学性能的影响*   总被引:1,自引:0,他引:1  
通过回流焊技术制备Au-Sn/Ni焊点,通过扫描电子显微镜和能谱检测分析钎焊接头的微观组织及其相组成,利用疲劳试验机对焊点的剪切强度进行检测,研究不同钎焊工艺对Au-Sn/Ni焊点组织和力学性能的影响。结果表明,在310 ℃钎焊1 min的Au-Sn/Ni焊点经过水冷或空冷后,焊料内部均形成镶嵌有离散分布的(Ni,Au)3Sn2相的(Au5Sn+AuSn)共晶组织,焊料/Ni界面处形成(Ni,Au)3Sn2金属间化合物(intermetallic compound,IMC)层;钎焊后炉冷的焊点,由于冷却速度过慢,导致焊料中Ni质量分数增大,(Ni,Au)3Sn2相异常长大消耗共晶组织中的(Au,Ni)Sn相,焊料共晶组织消失。随着钎焊时间的延长,基板中的Ni原子不断往焊料扩散,界面处的IMC层厚度均有不同程度的增加。随钎焊时间延长焊点的剪切强度逐渐下降,而剪切断裂模式为脆性断裂,发生在焊料与金属间化合物层的界面处。Au-Sn/Ni焊点在310 ℃下钎焊1 min,并采用水冷方式时得到的力学性能最佳。  相似文献   

16.
针对现有焊球生产设备结构复杂、成本高等缺点,设计了实验室用均匀钎料熔滴喷射装置。该装置分为压力控制器、液滴生成器、气体保护装置以及冷却凝固装置四个部分。其中液滴生成器采用喷嘴局部缩径,使熔滴在表面张力差及重力的作用下实现分离,有效地简化了装置的结构,降低了成本。利用所设计的装置对Sn3.0Ag0.5Cu焊球的制备工艺进行优化,并对优化工艺参数下制备的焊球从表面形貌与球形度、焊球尺寸分布以及钎料微观组织等方面进行质量评定。结果表明:喷射压力、喷嘴到冷却介质表面的距离以及喷嘴内径是影响焊球成形的主要因素。优化工艺参数下制备的焊球尺寸均匀、表面光亮、球形度好、内部组织细密无缺陷。所设计的装置能够满足实验室研究钎料喷射过程以及焊球制备的需要。  相似文献   

17.
以Cu-Ni-Sn-P非晶合金作为中间层材料,采用瞬时液相(TLP)扩散焊焊接了TA2工业纯钛,研究了保温时间对接头组织和性能的影响。结果表明:该接头结合处由残留中间层、等温凝固层和界面扩散层组成,随着保温时间的延长,残留中间层厚度减小,界面扩散层宽度增大,当保温5min后,接头处基本由羽毛状界面扩散区组成,宽度为25μm;接头剪切强度随保温时间的延长先增后降,保温时间为3min时达到最大,约180MPa,剪切断裂方式为脆性+塑性混合型断裂。  相似文献   

18.
对7075-T6铝合金和镀锌DP590钢板进行了搅拌摩擦搭接焊,并结合焊接过程中温度场、流场数值模拟结果,研究了金属间化合物(Intermetallic compound,IMC)厚度以及钩状结构对接头力学性能的影响规律。结果表明,IMC厚度较大时,IMC层在焊接残余应力作用下产生微裂纹,降低了接头冶金结合强度,当IMC厚度由0.8μm增大至4.3μm时,接头拉剪载荷降低17.8%。当钩状结构高度较大时,钩状结构上下两端宽度差较大,在拉剪载荷作用下钩状结构受力不均,薄弱部位易发生应力集中而断裂,降低了接头机械结合强度,接头性能随钩状结构高度的增大而下降。  相似文献   

19.
在大气环境中,应用超声诱导瞬间液相焊的方法,焊接以Ag-28Cu为中间层的Al-50Si合金。研究了超声振动时间、焊接温度对接头微观结构演变和Si颗粒迁移的影响。分析了Si颗粒增强的完全固溶体接头的快速形成过程。阐述了剪切强度与超声振动时间和接头组织之间的关系。在520℃焊接温度下,超声振动仅3s,接头发生了界面冶金结合。超声振动15s时,获得了Si颗粒增强的完全固溶体接头。焊接温度对Ag、Cu和Al之间的相互扩散产生影响。随着温度的增加,原子扩散加快。由于超声在固-液体介质中的效应,使得基体金属与中间层表面的氧化膜得到快速破除,基体金属与中间层产生元素扩散。当扩散达到一定浓度时,基体金属与中间层发生冶金反应,形成Al-Ag-Cu三元共晶液相,并且Si颗粒迁移进三元共晶液相中。随着超声振动时间延长,在超声振动、压力作用下,三元共晶合金减少,直至完全消失,剩余的Al(Ag,Cu)固溶体保留在焊缝中,焊缝闭合,获得了Si颗粒增强的完全固溶体接头。Si颗粒的迁移和三元共晶合金的挤出影响接头的剪切强度。剪切强度随超声振动时间的延长而增加。超声振动15s的剪切试样,其断裂发生在基体金属侧,属于韧性断裂,接头剪切强度最高,达到约123MPa。  相似文献   

20.
对比研究三明治结构线形Cu/Sn-3.0Ag-0.5Cu/Cu微焊点在拉伸、电-拉伸和电迁移后电-拉伸三种加载模式下的力学行为和断裂特性,并基于电流引发的焦耳热效应和电迁移效应,从电流对原子和空位扩散、空位浓度及位错滑移与攀移的影响等方面,探讨电-力耦合载荷对焊点拉伸断裂行为的影响。结果表明,焊点在电-拉伸时应力-应变曲线呈现快速变形、线性变形和加速断裂三阶段,其中快速变形阶段是以焦耳热引起的热弹性变形为主,而拉伸和电迁移后电-拉伸时应力-应变曲线只存在线性变形和加速断裂阶段;电迁移后电-拉伸时焊点断裂强度和断裂应变最小而等效模量最大,拉伸加载时焊点断裂强度和断裂应变最大而等效模量最小;电-拉伸时β-Sn相趋于沿电、力加载方向排列;三种加载模式下焊点断裂均发生在钎料体内,呈韧性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号