首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 525 毫秒
1.
无铅微焊点界面断裂行为的尺寸效应   总被引:2,自引:0,他引:2  
采用有限元模拟和试验方法研究不同尺寸的"铜引线/钎料/铜引线"对接结构微焊点在准静态微拉伸载荷下的断裂行为,以及电迁移与热时效作用对其断裂性能的影响.结果表明,随着微焊点高度的减小,焊点中界面裂纹扩展驱动力逐渐减小,抗断裂性能有所提高;界面裂纹尖端剪切型裂纹扩展驱动力KⅡ值明显高于张开型裂纹扩展驱动力KⅠ值;Sn-Ag-Cu无铅钎料微焊点中界面裂纹的应力强度因子KⅡ和KⅠ远低于Sn-Pb钎料微焊点,其抗断裂能力要明显优于后者.模拟结果还表明,电迁移极性效应导致的金属间化合物增厚对微焊点断裂性能影响不大,而焊点边缘微空洞的横向薄饼状扩展导致界面应力集中系数显著上升,最大Von Mises等效应力点位于金属间化合物/铜界面处;微焊点在热时效过程中两侧界面金属间化合物层厚度的增加使界面裂纹尖端的应力水平近似呈指数函数衰减.  相似文献   

2.
对比研究三明治结构线形Cu/Sn-3.0Ag-0.5Cu/Cu微焊点在拉伸、电-拉伸和电迁移后电-拉伸三种加载模式下的力学行为和断裂特性,并基于电流引发的焦耳热效应和电迁移效应,从电流对原子和空位扩散、空位浓度及位错滑移与攀移的影响等方面,探讨电-力耦合载荷对焊点拉伸断裂行为的影响。结果表明,焊点在电-拉伸时应力-应变曲线呈现快速变形、线性变形和加速断裂三阶段,其中快速变形阶段是以焦耳热引起的热弹性变形为主,而拉伸和电迁移后电-拉伸时应力-应变曲线只存在线性变形和加速断裂阶段;电迁移后电-拉伸时焊点断裂强度和断裂应变最小而等效模量最大,拉伸加载时焊点断裂强度和断裂应变最大而等效模量最小;电-拉伸时β-Sn相趋于沿电、力加载方向排列;三种加载模式下焊点断裂均发生在钎料体内,呈韧性断裂。  相似文献   

3.
针对目前无铅电子封装中主流应用的Sn3.0Ag0.5Cu钎料,研究了其直径为600~60μm的焊球在开孔型Cu基底(焊盘)上260℃恒温回流不同时间(10~300s)形成跨尺度凸点结构Sn3.0Ag0.5Cu/Cu微互连焊点时界面金属间化合物(IMC)的生长与演化行为,以及跨尺度微焊点的剪切性能与断裂行为。研究结果表明,焊球直径大于200μm时焊点界面IMC生长速率随其尺寸减小而增大,而焊球直径小于200μm时焊点界面IMC生长速率随焊球直径减小呈减小趋势。对微焊点界面显微组织演化的分析表明,界面IMC的粗化生长过程随回流时间延长依次经历了奥斯瓦尔德熟化生长及晶粒吸附与晶界迁移生长两个阶段,且其生长阶段的转变随焊点尺寸减小而更早发生。准静态剪切加载条件下的试验结果表明,微焊点强度随其尺寸减小而增加,而恒温回流时间增加时(10~300 s)同尺寸微焊点的剪切强度并未出现明显变化,但回流时间对大尺寸焊点剪切断裂位置有明显影响。  相似文献   

4.
针对目前无铅电子封装中主流应用的Sn3.0Ag0.5Cu钎料,研究了其直径为600~60μm的焊球在开孔型Cu基底(焊盘)上260℃恒温回流不同时间(10~300s)形成跨尺度凸点结构Sn3.0Ag0.5Cu/Cu微互连焊点时界面金属间化合物(IMC)的生长与演化行为,以及跨尺度微焊点的剪切性能与断裂行为。研究结果表明,焊球直径大于200μm时焊点界面IMC生长速率随其尺寸减小而增大,而焊球直径小于200μm时焊点界面IMC生长速率随焊球直径减小呈减小趋势。对微焊点界面显微组织演化的分析表明,界面IMC的粗化生长过程随回流时间延长依次经历了奥斯瓦尔德熟化生长及晶粒吸附与晶界迁移生长两个阶段,且其生长阶段的转变随焊点尺寸减小而更早发生。准静态剪切加载条件下的试验结果表明,微焊点强度随其尺寸减小而增加,而恒温回流时间增加时(10~300 s)同尺寸微焊点的剪切强度并未出现明显变化,但回流时间对大尺寸焊点剪切断裂位置有明显影响。  相似文献   

5.
电子封装微焊点往往在电、热、力等多种载荷共同作用下服役,且具有鲜明的组织不均匀特征.研究电-热-力耦合载荷下电流密度和温度对电子封装组织不均匀线型Cu/Sn-58Bi/Cu微焊点拉伸力学性能及其尺寸效应的影响.结果 表明,较低温度和较低电流密度情况下,随焊点高度降低,Cu基底对钎料的力学约束增强,焊点拉伸强度提高,断裂...  相似文献   

6.
借助纳米压痕试验方法,对Cu/SAC305/Cu,Cu/SAC0705/Cu和Cu/SAC0705BiNi/Cu微焊点体钎料在不同最大载荷下的压入蠕变性能进行比较,并分析和讨论Bi、Ni元素的添加对低银Cu/SAC0705/Cu微焊点体钎料蠕变性能的影响。试验采用一次加载-卸载方式,加载时最大载荷分别为20mN、30mN、40mN和50mN,保载时间均为180s。采用FEISIRION扫描电子显微镜对微焊点体钎料在不同最大载荷下的压痕形貌进行观察。结果表明:在相同最大载荷和保载时间条件下,3种微焊点中Cu/SAC0705BiNi/Cu的蠕变深度和压痕尺寸均小于Cu/SAC305/Cu和Cu/SAC0705/Cu。在4种不同最大载荷下,与Cu/SAC0705/Cu微焊点体钎料相比,Cu/SAC0705BiNi/Cu微焊点体钎料的压入蠕变率分别降低了11.883%、16.059%、8.8157%和12.891%。Bi、Ni元素的添加,使Cu/SAC0705/Cu微焊点体钎料的蠕变应力指数提高了32.175%,有效提高了低银Cu/SAC0705/Cu微焊点体钎料的抗蠕变性能。  相似文献   

7.
采用SEM、EDS和拉伸-剪切试验等方法研究了微量稀土元素钕对Sn-6.5Zn-xNd(x=0,0.1,0.5)钎料/铜焊点界面组织,重点是界面金属间化合物(IMC)特征及结合性能的影响。结果表明:在Sn-6.5Zn合金中添加微量钕具有明显的变质作用,能够促进界面形成均匀细密的Cu5Zn8IMC层;钕添加量的增加对界面IMC尺寸与分布没有产生明显影响;钕添加量为0.1%(质量分数,下同)时能显著改善钎料/铜焊点结合性能,而当添加量为0.5%时,界面处稀土化合物的聚集会导致焊点结合性能下降。  相似文献   

8.
基于Ansys软件建立了板级光互连模块有限元模型,并对模型进行了温振耦合加载分析,获取了耦合条件下应力应变的数据,分析了焊点高度、焊盘直径和焊球体积三种焊点形态参数的变化对焊点应力应变的影响。结果表明:焊点阵列内应力应变由中间位置处焊点向两端边角处焊点逐渐增大;最大应力应变出现于焊点阵列边角处的焊点上;随着焊点高度的增加,焊点阵列的最大应力应变逐渐增大,随着焊盘直径增大和焊球体积的增加,最大应力应变逐渐减小。  相似文献   

9.
对微电子组装互连结构进行了温度冲击测试,对比了低银和高银两种无铅钎料的在温度冲击载荷作用下的组织变化和失效模式。结果表明:新型低银无铅钎料SA C B N 07的抗冷热冲击性能最好,焊点失效后三种材料中裂纹的扩展路径不同,SA C 305失效裂纹位于体钎料中,SA C B N 07钎料断裂位置逐渐由钎料基体转移到IM C层中,而SA C 0307断裂位于界面IM C中;钎料中B i、N i元素的加入有效地抑制了IM C的生长,相同冷热冲击时间,SA C B N 07钎料中界面金属间化合物(IM C)厚度最薄。  相似文献   

10.
BGA结构无铅微焊点的低周疲劳行为研究   总被引:2,自引:0,他引:2  
基于塑性应变能密度概念提出微焊点低周疲劳裂纹萌生、扩展和寿命预测模型,阐明其与连续介质损伤力学的联系,评估应力三轴度对预测模型的影响,并通过试验和数值计算相结合的方法确定出微米尺度球栅阵列(Ball grid array,BGA)结构单颗Sn3.0Ag0.5Cu无铅焊点(高度为500~100 μm,焊盘直径为480 μm)疲劳裂纹萌生和扩展模型中的相关常数。研究结果表明,疲劳裂纹萌生和扩展循环数与每个循环所产生的塑性应变能密度均呈幂函数关系;应力三轴度会影响疲劳裂纹扩展速率,并最终影响焊点的疲劳寿命;应力三轴度与加载方式有关,拉伸载荷下焊点的应力应变行为受异种材料界面和封装结构力学约束作用的影响,应力三轴度随焊点高度降低而明显升高;而剪切载荷作用下焊点中的力学约束十分有限,焊点高度变化对应力三轴度的影响非常小;测得的高度为100 μm焊点的疲劳裂纹扩展相关常数可以很好地用于预测其他不同高度焊点的疲劳寿命,表明所提出的预测模型可以有效地减小由几何结构和体积变化造成的塑性应变能集中现象对焊点疲劳寿命的影响。  相似文献   

11.
将蒙特卡罗法和有限元方法用于分析球珊阵列封装(BGA封装)焊点中微孔洞缺陷对焊点应力的影响。先用X射线断层扫描方法测定焊点中孔洞大小及其分布规律,然后利用Abaqus有限元分析软件建立BGA封装有限元模型,采用Anand本构方程描述焊点的应力应变响应,分析BGA封装焊点应力分布情况;并针对关键焊点即应力最大的焊点,建立了含孔洞大小和位置呈随机分布的焊点参数化有限元模型,结合试验结果,分析了孔洞直径和位置对焊点应力分布的影响。结果表明:微孔洞直径越小,越接近于焊点的表面,焊点中的应力越大。  相似文献   

12.
6061/A356异种铝合金脉冲MIG搭接焊*   总被引:1,自引:0,他引:1  
利用直流脉冲MIG焊接技术,进行6061变形铝合金与A356铸造铝合金板材的搭接焊接,并分析接头的力学性能、微观组织及元素分布。拉伸试验结果表明,当A356铸造铝合金板在上,6061变形铝合金板在下,焊枪行走速度为10 mm/s时,搭接接头抗拉强度最高,为95 MPa。接头拉伸试样的断裂位置都位于焊缝区,断裂形式主要为混合型断裂。微观组织及元素分析结果表明,在A356铝合金一侧的部分熔融区内发生Fe和Mg元素偏聚,形成了片状Al-Fe-Si相和颗粒状Al-Fe-Mg-Si相,这两种富Fe相会削弱接头性能。在6061铝合金一侧的部分熔融区内产生了晶界液化,形成了Al-Mg-Si-Cu相+Al固溶体贫化区的液化组织,且该相周围有Fe元素偏聚。三角区是接头中最薄弱的位置,接头拉伸试样均起裂于此并最终断裂于焊缝。  相似文献   

13.
Among the PBGA (plastic ball grid array) packages, a 72-I/O OMPAC (overmolded effect array carrier) package is studied during thermal cycling. The ANSYS software is applied to analyze the effects of some factors on the solder joint for the fatigue life due to elastoplastic deformation of the electronic package; those factors are solder structure, shape, and pitch. The result shows that the maximum equivalent plastic strain range occurs at two interfaces, one is between the solder joint and the substrate, another one is between the solder joint and the printed circuit board. Moreover, the solder shape is determined by the solder height and the pad diameter under a fixed value of solder volume. It is found that the convex-shaped solder with larger height and smaller pitch has smaller maximum equivalent plastic strain range, which leads to the longer fatigue life. In addition, there are two kinds of solder structure: pure solder joint and copper core solder joint. In the copper core solder joint, the eutectic part becomes so small that a larger strain is induced. Therefore, the pure solder joint has smaller maximum equivalent plastic strain range and longer fatigue life than the copper core solder joint.  相似文献   

14.
SnAgCu/SnAgCuCe焊点的显微组织与性能   总被引:1,自引:1,他引:1  
针对SnAgCu和SnAgCuCe两种无铅焊点,研究焊点内部组织、力学性能及热疲劳特性。研究结果表明,稀土元素Ce的加入可以提高焊点的力学性能,稀土元素的添加可以使SnAgCu焊点拉伸力提高近12.7%。稀土元素的添加细化SnAgCu基体组织,同时减小金属间化合物颗粒(Cu6Sn5和Ag3Sn)的尺寸,这是SnAgCuCe焊点力学性能提高的主要原因。拉伸断裂后的扫描电镜分析表明,两种焊点的断裂呈现明显的韧性断裂特征。另外在温度循环载荷下,稀土元素可以显著提高SnAgCu焊点的疲劳寿命。基于有限元模拟发现SnAgCuCe的抗蠕变性能显著高于SnAgCu焊点。  相似文献   

15.
钎焊工艺对Au-Sn/Ni焊点组织及力学性能的影响*   总被引:1,自引:0,他引:1  
通过回流焊技术制备Au-Sn/Ni焊点,通过扫描电子显微镜和能谱检测分析钎焊接头的微观组织及其相组成,利用疲劳试验机对焊点的剪切强度进行检测,研究不同钎焊工艺对Au-Sn/Ni焊点组织和力学性能的影响。结果表明,在310 ℃钎焊1 min的Au-Sn/Ni焊点经过水冷或空冷后,焊料内部均形成镶嵌有离散分布的(Ni,Au)3Sn2相的(Au5Sn+AuSn)共晶组织,焊料/Ni界面处形成(Ni,Au)3Sn2金属间化合物(intermetallic compound,IMC)层;钎焊后炉冷的焊点,由于冷却速度过慢,导致焊料中Ni质量分数增大,(Ni,Au)3Sn2相异常长大消耗共晶组织中的(Au,Ni)Sn相,焊料共晶组织消失。随着钎焊时间的延长,基板中的Ni原子不断往焊料扩散,界面处的IMC层厚度均有不同程度的增加。随钎焊时间延长焊点的剪切强度逐渐下降,而剪切断裂模式为脆性断裂,发生在焊料与金属间化合物层的界面处。Au-Sn/Ni焊点在310 ℃下钎焊1 min,并采用水冷方式时得到的力学性能最佳。  相似文献   

16.
车身焊接易造成翘曲缺陷,显著影响其疲劳寿命。针对翘曲缺陷对平均应力强度因子的影响,基于力学理论和有限元法,将焊点模型模块化,对比分析仿真得出的合格焊点平均应力强度因子ΔKqua与翘曲缺陷焊点平均应力强度因子ΔKdef。通过寻找影响因素及影响规律,提出翘曲因子C的概念并通过仿真验证其适用性。仿真分析与理论推导得出的平均应力强度因子间的平均误差小于6%。试验结果表明,经翘曲因子修正的翘曲缺陷焊点ΔKdef的平均准确率为84.6%。  相似文献   

17.
镀锌高强钢因具有高强度、耐腐蚀以及延展性优良等特点被应用于汽车构件领域,在实现减重的同时,提高汽车安全性能。电阻点焊作为材料连接的重要技术之一,因具有焊接过程简单、热影响区小、焊接变形与应力小及焊接速度快等优点,被广泛应用于连接镀锌高强汽车用钢。但在焊接过程中锌镀层会在电阻热的作用下熔化并渗入至焊点内部,从而在焊接接头形成液态金属脆化裂纹(Liquid metal embrittlement cracks, LME),液态金属脆化裂纹会使焊接接头在拉伸过程中发生脆性断裂,严重恶化焊接接头的力学性能。从液态金属脆化裂纹形成机理、表征手段和母材显微组织的影响等方面详细总结了国内外在此方面的研究,并归纳出改善镀锌高强钢焊接接头液态金属脆化裂纹的措施,为后续的研究工作提供一定的参考与借鉴。  相似文献   

18.
不同强韧性组配的16Mn钢焊接接头的断裂性能和裂行为   总被引:3,自引:0,他引:3  
对16Mn钢不同组配焊接接头的断裂性能和断裂行为进行了试验研究。认为在高应力塑性断裂和高应力脆性断裂状态下,16Mn钢接头的断裂强度为焊缝强度和接头各部分塑性变形能力所决定,提高焊缝强度以及提高焊缝和母材的塑性均有利于提高接头的抗断裂能力;在低应力脆性断裂状态下,接头的抗断裂性能是可以根据焊缝的低温冲击韧度进行评价的。焊接接头各部分塑性变形能力及其相互关系对焊接接头的断裂行为具有不可忽视的影响,是评价接头断裂性能的重要依据。  相似文献   

19.
对淬火后22MnB5钢点焊结构进行了试验分析。通过拉伸试验结合应变片测得超高强钢的弹性模量、泊松比和焊点周边的力学特性及硬度与金相的观察分析,通过光学显微镜分析焊点处的断口样貌,得到了点焊结构破坏的原因,初步确定超高强钢点焊结构由塑性环、焊核、母材三部分组成。焊点处的力学变化是复杂的,远力端首先破坏失效,并且显示出了受力方向,塑性环是硬度最小部位,拉伸作用后连接部分产生负弯矩,该变矩作用能使焊核产生很小的转动角度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号