首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzlc location exists near the mid span of the rotor.  相似文献   

2.

The current study aims to understand the aero-thermal performance of a cooled cavity tip in a single stage transonic turbine. The squealer tip of the uncooled turbine blade was reduced to an aerodynamic loss with suppressing leakage flow. However, the aerodynamic loss study of the cooled turbine blade tip is rare. It is necessary to study the tip cavity of the cooled turbine blade. Depth, front blend radius and aft blend radius of the cavity were set as design variables, and 30 cases were chosen using design of experiments. These cases were calculated with conjugate heat transfer method. Approximation model was made using the Kriging method, and tip cavity shape was optimized with multidisciplinary design optimization. Average total pressure loss behind the trailing edge and cooling effectiveness of blade tip surface were set to the objective function. The aerodynamic optimization model decreased 1.6 % of total pressure loss, the heat transfer optimization model increased 1.3 % point of cooling effectiveness and aero-thermal optimization model were found. Volume of tip cavity becomes larger when three design variables are grown. Amount of tip leakage flow and its distribution over the tip region increases and total pressure loss and cooling effectiveness increase. In terms of heat transfer, blade tip without cavity is advantageous. Total pressure loss coefficient, however, also increases over 5 %. To improve both aero-thermal characteristics of cooled blade tip, the design using the multidisciplinary design optimization is recommended.

  相似文献   

3.
针对高精度复杂涡轮叶片成形精度难控制的问题,提出了基于叶型中弧线的蜡模模具型腔优化设计方法。对反映中弧线几何特征的参数进行提取与偏差分析后进行逆向迭代,经过对叶型的复原和对叶身的重构,建立优化的蜡模模具型腔,实现了对叶片凝固和冷却过程中非线性变形的补偿。与有限元法模具型腔逆向设计方法相比,无需后续复杂的曲面拼接和光顺技术。采用该方法对某型涡轮叶片蜡模模具型面进行优化,使铸件的尺寸误差得到了大幅度降低。数值模拟与实验结果吻合情况良好,经过4次迭代优化,得到的仿真铸件模型与设计模型的二维偏差平均值由优化前的0.350 94 mm降低至0.111 51 mm。  相似文献   

4.
低展弦比涡轮静叶栅叶片正弯曲作用的试验研究   总被引:2,自引:0,他引:2  
对弯曲叶片研究中代表性的HIT涡轮静叶型重新开展了叶片弯曲对低展弦比涡轮静叶栅流场影响的试验研 究。测量了直叶片叶栅、+10°、+20°和+30°弯曲叶片叶栅的进、出口流场,分析了叶片弯曲对叶栅出口二次流、 总压损失和气流角的影响。结果表明:对该叶型叶栅,叶片正弯曲既不能大幅度降低叶栅二次流损失,也不能改 善叶栅出口气流角沿叶高的分布:叶栅出口二次流动、尾缘涡及壁角涡随叶片正弯曲角的增大而增强,而通道涡 强度和位置变化不大;该研究结果同以往有关文献的研究结果完全不同。  相似文献   

5.
叶片作为汽轮机的重要组成部分,决定着能量的转换效率。对汽轮机动叶片的结构特征进行了研究,从叶型的特点,结合国际标准化组织颁布的工业产品数据交换标准的要求,选取了三次均匀有理B样条和2×3次非均匀有理B样条为叶型的数学模型,推导了各自的矩阵表达式,证明了曲线的连续性,实现了叶片的数字化表示。由矩阵表达式可以看出,明显的三次均匀有理B样条比2×3次非均匀有理B样条方法的计算量小、简单和便于控制等,为后续的插补算法研究提供了理论支持。  相似文献   

6.
基于位移场的涡轮叶片模具设计中的反变形技术研究   总被引:1,自引:0,他引:1  
为了提高涡轮叶片的成形质量,减少模具的修模次数,提出了一种基于反变形原理的模具优化设计方法。通过使用ProCast软件对涡轮叶片进行铸造过程仿真,利用有限元模型计算涡轮叶片的精铸位移场,建立基于位移场的反变形方法,并使用该方法对模具进行优化设计,经涡轮叶片模具设计仿真试验验证,所采用的方法取得了良好的效果,可初步应用于模具的优化设计中。  相似文献   

7.
基于位移场的涡轮叶片模具设计中的反变形技术研究   总被引:1,自引:0,他引:1  
为了提高涡轮叶片的成形质量,减少模具的修模次数,提出了一种基于反变形原理的模具优化设计方法。通过使用ProCast软件对涡轮叶片进行铸造过程仿真,利用有限元模型计算涡轮叶片的精铸位移场,建立基于位移场的反变形方法,并使用该方法对模具进行优化设计,经涡轮叶片模具设计仿真试验验证,所采用的方法取得了良好的效果,可初步应用于模具的优化设计中。  相似文献   

8.
A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.  相似文献   

9.
Sectional aerodynamic design optimization was performed to enhance the aerodynamic performance of horizontal axis wind turbine rotor blades based on a computational fluid dynamics technique. The proposed sectional optimization framework consists of airfoil section contour modeling by the PARSEC shape function and a modified feasible direction search algorithm. To enhance the aerodynamic performance of wind turbine rotor blades, the objective of the design framework was set to maximize the lift-over-drag ratio for each design section. A two-dimensional Navier-Stokes flow solver coupled with a transition turbulence model was used to evaluate the aerodynamic performance during the iterative design optimization procedure. The sectional flow conditions were extracted from the flow of a three-dimensional rotor blade configuration. The design framework was applied to the National Renewable Energy Laboratory Phase VI rotor blade. The design optimization was conducted at nine spanwise sections of the rotor blade. To validate the present methodology, the aerodynamic performances of the original baseline rotor and the rotor after the design optimization were compared by using a three-dimensional Navier-Stokes flow solver. It was found that approximately 11% of torque enhancement was achieved after the aerodynamic shape design optimization.  相似文献   

10.
This paper describes a numerical investigation on the performance deteriorations of a low speed, single-stage axial turbine due to use of rough blades. Numerical calculations have been carried out with a commercial CFD code, CFX-Tascflow, by using a modified wall function to implement rough surfaces on the stator vane and rotor blade. To assess the stage performance variations corresponding to 5 equivalent sand-grain roughness heights from a transitionally rough regime to a fully rough regime, stage work coefficient and total to static efficiency were chosen. Numerical results showed that both work coefficient and stage efficiency reduced as roughness height increased. Higher surface roughness induced higher blade loading both on the stator and rotor which in turn resulted in higher deviation angles and corresponding work coefficient reductions. Although, deviation angle changes were small, a simple sensitivity analysis suggested that their contributions on work coefficient reductions were substantial. Higher profile loss coefficients were predicted by higher roughness heights, especially on the suction surface of the stator and rotor. Furthermore sensitivity analysis similar to the above, suggested that additional profile loss generations due to roughness were accountable for efficiency reductions.  相似文献   

11.
透平叶栅自动气动优化设计方法   总被引:2,自引:1,他引:1  
为提高叶栅的气动性能,提出基于能量法的叶栅自动设计参数化方法,结合自适应差分进化算法和Reynolds-Averaged Navier-Stokes (RANS)方程求解技术,提出适用于透平叶栅气动优化设计的自动气动优化算法。以总压恢复系数最高为目标函数,在满足流量和出口气流角约束条件下,利用提出的气动优化算法对一小展弦比后加载叶栅进行了自动气动优化设计。优化后,叶栅的总压恢复系数提高了0.7%,叶栅的气动性能明显提高。优化结果表明该算法具有良好的优化性能和应用前景。  相似文献   

12.
To reduce airfoil self-noise from a 10 kW wind turbine, we modified the airfoil shape and planform of a wind turbine blade. To obtain the optimal blade design, we used optimization techniques based on genetic algorithms. The optimized airfoil was first determined based on a section of the rotor blade, and then the optimized blade was designed with this airfoil. The airfoil self-noise from the rotor blades was predicted by using a semi-empirical model. The numerical analysis indicates that the level of the airfoil self-noise from the optimized blade is 2.3 dB lower than that from the baseline blade at the rated wind speed. A wind tunnel experiment was also performed to validate the design optimization. The baseline and optimized rotors were scaled down by a factor of 5.71 for the wind tunnel test. The experimental results showed that airfoil self-noise is reduced by up to 2.6 dB.  相似文献   

13.
基于数值优化方法的轴流压气机叶片设计与分析   总被引:1,自引:0,他引:1  
高坤  楚武利  董万峰 《流体机械》2007,35(6):18-23,4
基于商业软件NUMECA的叶轮机械全三维优化设计平台Design3D,采用三维N-S方程流场计算、网格自动生成、三维叶片参数化造型与遗传算法寻优相结合的方法,对一跨音速轴流压气机叶轮进行了三维叶片型线优化设计.优化目标是在流量、总压比不减小的情况下,降低总压损失,以提高其整体效率.优化叶片与原叶片相比,总压损失显著降低,等熵效率提高了1.285%,同时总压比和流量也都得到了提高.通过流场分析,可以看出优化叶片性能的提高主要是源于中上部叶展区域的总压损失的减小,而总压损失的减小则主要归功于分离区的减小和激波的削弱.  相似文献   

14.
介绍利用UG软件对涡轮叶片关键部位的造型过程中,一处缺陷的处理技巧.该方法源于渐进的设计思想,明显地抑制了曲面的皱褶.  相似文献   

15.
基于UG的航空发动机涡轮叶片模态分析   总被引:1,自引:1,他引:1  
基于UG软件对某型航空发动机涡轮叶片的振动特性进行了研究,建立了该叶片的实体模型,并利用UG结构分析模块进行了模态分析,得到了叶片的各阶固有频率和相应的振型.根据计算结果分析了涡轮叶片的振动特性,为该叶片的设计优化和振动安全性检验提供了数值依据.  相似文献   

16.
叶片是航空发动机的关键零件,以某型航空发动机转子叶片为研究对象,针对叶片电解加工阴极设计这一工程问题,着重考察了采用非线性电解液进行加工时,电解液的非线性特性对阴极设计的影响.本文首先建立了模型叶片的三维实体造型,在此基础上探讨了电解液的非线性特性对电解加工过程和阴极设计产生影响的机理,通过半实验法与数据库技术相结合的方式有效的将这种非线性特性集成到阴极设计方法中.  相似文献   

17.
叶片作为风电机组的关键部件之一,其设计和可靠性直接关系到风力发电机组的安全运行,而气动性能的好坏将会直接影响到叶片外形设计及机组效率。因此,对叶片进行气动性能计算和数值模拟成为必要。根据动量叶素理论建立风力机叶片气动计算模型,考虑到叶尖损失,叶根损失,叶片宽度和厚度等因素的影响对该模型进行修正。用MATLAB语言编制计算程序,针对某一具体翼型数据进行了气动性能的计算,分析了风轮实度、安装角、锥角以及偏航等因素对叶片气动性能的影响。  相似文献   

18.
对某型涡轮平面叶栅,在不同的主流雷诺数下,以多种喷射方式和不同的流量比喷射冷气,研究型面压力分布及出口气流场参数的变化。试验结果表明,冷气入射对叶片表面静压分布几乎没有影响,只对冷气孔位置附近压力产生影响,相对来说,压力面入射冷气导致的变化小于吸力面。随进口马赫数升高,在相同的冷气流量比下流动总压降低。然而,在相同的马赫数下,随着冷气流量比增大,压力面入射跟吸力面入射导致的总压变化规律不一样。  相似文献   

19.
This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with SST turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The blade profile as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile. This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.  相似文献   

20.
As a core component of a hydropower station, hydro turbines play a vital role in the integration of a power station. Research on the technology of hydro turbine is continuously increasing with the development of water electricity. It is effective and successful to design a Francis turbine runner blade with good performance by one-dimensional hydraulic design method. For the one-dimensional hydraulic design, the runner blade angle at leading and trailing edges can be defined by calculation of Euler’s head. Design of the runner blade profile at several cross sections is needed to design a runner shape. In this study, there are three different blade loadings conducted to compare the internal flow characteristics and performance. The result shows that the front loading achieves the best efficiency in comparison to other loadings, which is good at suppressing the loss at draft tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号