首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
采用超声辅助提取野金柴中的黄酮类化合物,研究液料比、乙醇浓度、超声功率、超声时间对提取得率的影响,并采用响应曲面法优化提取工艺条件。采用ADS-7大孔树脂对野金柴中的根皮苷进行分离,分析总黄酮、根皮苷、黄酮R(除去根皮苷后的剩余黄酮组分)的抗氧化活性。结果表明,各工艺条件对野金柴总黄酮得率的影响为:超声时间>乙醇浓度>超声功率>液料比,优化所得最佳的提取工艺条件为:液料比40∶1,乙醇浓度80%,超声功率540 W,超声时间60 min,在此条件下野金柴总黄酮得率为8.82%±0.09%。总黄酮、根皮苷、黄酮R清除DPPH自由基的IC50值分别为0.0205、0.0222、0.0261 mg/mL;清除ABTS自由基的IC50值分别为0.0220、0.0233、0.0266 mg/mL,总黄酮抗氧化能力最强,根皮苷其次,再次为黄酮R,三者都有较好的DPPH和ABTS自由基清除能力。  相似文献   

2.
探讨超声波辅助提取石榴根皮多酚的工艺条件,并测定其体外抗氧化能力。以总黄酮得率为评价指标,通过Plackett-Burman(PB)设计筛选显著性影响因素,Central Composite Design(CCD)设计优化最佳工艺条件,并通过检测其对1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基及2,2-联氮基-双-(3-乙基苯并噻唑啉-6-磺酸)二氮盐(2,2'-amino-di(2-ethyl-benzothiazolinc sulphonic acid-6)ammonium salt,ABTS)的清除作用评价其抗氧化活性。结果表明:当乙醇体积分数60%、超声温度49 ℃、超声时间32 min时,石榴根皮多酚得率为1.643%,接近模型预测值。石榴根皮多酚对DPPH自由基和ABTS+·的清除率分别为70.3%和65.7%,IC50相应为71.166和163.319 μg/mL,其清除能力与多酚浓度之间呈一定的正相关关系。超声波辅助提取石榴根皮中多酚的方法可行、可靠,石榴根皮多酚具有一定的体外抗氧化能力。  相似文献   

3.
石榴皮总黄酮的提取工艺及抑制亚硝化反应   总被引:1,自引:0,他引:1  
目的:研究石榴皮总黄酮的提取工艺及黄酮类物质对亚硝化反应的抑制能力。方法:通过正交试验,探讨影响总黄酮提取率的因素范围和最佳组合,并采用分光光度法测定总黄酮提取液对亚硝酸盐清除能力和亚硝胺抑制能力。结果:石榴皮总黄酮的最佳提取工艺条件为乙醇体积分数60%、料液比1:60(g/mL)、提取时间40min、超声电流强度150mA。在最佳提取工艺条件下,石榴皮总黄酮的平均提取率为84.8mg/g,石榴皮总黄酮提取液对亚硝酸钠的最大清除率为81.2%,对亚硝胺合成的最大阻断率为67.0%。结论:石榴皮总黄酮提取液对亚硝化反应的抑制能力较强。  相似文献   

4.
以西藏芜菁为原料,研究复合酶辅助超声法提取芜菁中总黄酮的最佳工艺条件及其抗氧化活性。以总黄酮得率为考察指标,通过Plackett-Burman实验筛选出对得率影响最显著的三个因素:复合酶配比、料液比及超声功率。随后通过响应面法优化芜菁总黄酮的提取工艺,同时通过DPPH自由基和ABTS+自由基清除实验评估了芜菁总黄酮的抗氧化活性。结果表明,复合酶辅助超声法提取芜菁总黄酮的最佳工艺条件为:复合酶配比为1.9:1 g/g,复合酶用量为2%,料液比为1:38 g/mL,乙醇浓度为75%,酶解温度为50℃,酶解时间为55 min,超声功率为204 W,超声时间为60 min,在此条件下总黄酮得率达到最大值1.458%。抗氧化实验结果表明芜菁总黄酮对DPPH自由基清除的IC50为185.6 μg/mL,对ABTS+自由基清除的IC50为164.3 μg/mL,说明芜菁总黄酮具有体外抗氧化活性。综上,本研究得到了复合酶辅助超声法提取芜菁总黄酮的最佳工艺条件,且提取得到的芜菁总黄酮具有较强的抗氧化活性,为西藏芜菁的开发及利用提供了一定的科学依据。  相似文献   

5.
本文以柴葛根为原料,以纤维素酶辅助超声法提取葛根多糖的工艺并对其DPPH自由基清除能力进行研究。在单因素研究结果基础上,确定纤维素酶的用量、超声功率、超声时间和超声温度四因素三水平Box-Benhnken组合试验,优化多糖得率条件。结果表明:在纤维素酶用量6.0%,超声功率280 W,超声时间为52 min,超声温度65℃条件下,多糖得率为4.93%±0.02%,与预测值的误差在2%之内。酶辅助超声法提取的葛根多糖对DPPH清除自由基能力IC50值为954.97 μg/mL,热回流法的IC50值为1379.60 μg/mL,维生素C为131.07 μg/mL。因此,纤维素酶辅助超声法提取葛根多糖具有较强清除DPPH自由基活性,为葛根多糖的开发利用的IC50值提供依据。  相似文献   

6.
李振  李萍 《现代食品科技》2019,35(4):130-139
本研究对忍冬藤多糖进行提取、分离和纯化,测定了其清除亚硝酸盐和阻断亚硝胺合成的作用。试验以忍冬藤多糖得率为指标,采用响应面法优化超声辅助提取多糖工艺,通过Sevag法脱蛋白、醇沉,真空干燥得到多糖,在模拟胃酸的条件下,探讨了忍冬藤多糖对清除亚硝酸盐阻断亚硝胺合成的影响。结果标明,忍冬藤多糖最佳提取条件为:液料比为30:1,提取时间为40min,超声功率为210 W,提取温度70℃,在此条件下,忍冬藤多糖得率理论值为8.53%,验证试验结果多糖得率为8.46%,在质量浓度为500μg/mL时,对亚硝酸盐的清除率为90.44%,对亚硝胺合成的阻断率为71.24%。因此,采用响应面法优化超声辅助提取忍冬藤多糖工艺预测性良好,忍冬藤多糖具有清除亚硝酸盐与阻断亚硝胺合成的作用,本研究为忍冬藤进一步利用和开发其衍生生物活性多糖产品提供了理论依据。  相似文献   

7.
旨在提高黄槿资源的利用率,探讨黄槿叶总黄酮的超声辅助提取工艺,并测定黄槿叶总黄酮对亚硝酸盐的清除能力。以黄槿叶总黄酮得率为响应值,采用超声辅助提取方法,以超声温度、超声时间、乙醇浓度和液料比为影响因素进行单因素实验,并采用响应面法对提取工艺进行优化。以VC为对照,测定黄槿叶总黄酮对亚硝酸盐的清除能力。结果表明,黄槿叶总黄酮最佳的提取工艺条件为:超声温度74℃,超声时间29 min,乙醇浓度58%,液料比29∶1 mL/g,在此条件下黄槿叶总黄酮的得率为38.15 mg/g,与预测的相对误差为0.73%,该优化工艺准确率高,可靠性强。且提取的黄槿叶总黄酮与亚硝酸盐的清除率之间存在量效关系,具有较好的亚硝盐清除能力。  相似文献   

8.
佛手黄酮提取工艺优化及其体外抗氧化活性   总被引:2,自引:0,他引:2  
本研究通过乙醇回流法提取佛手黄酮,在单因素实验的基础上,以得率为指标,通过响应面优化分析,优化佛手总黄酮的提取工艺,并对其体外抗氧化活性进行评价。结果表明:佛手黄酮最佳提取条件为:乙醇浓度73%,提取温度80℃,提取时间90 min,料液比1:31 g/mL。在此条件下黄酮得率为1.34%;佛手黄酮对DPPH和ABTS自由基均有一定的清除作用,且呈明显的剂量效应关系,其中DPPH自由基清除率的IC50为0.8 mg/mL,ABTS自由基清除率的IC50为0.07 mg/mL。ORAC(总抗氧化能力)为20.18 μmol TE/g。以上结果表明,佛手黄酮是一种良好的天然抗氧化剂。  相似文献   

9.
以生姜为原料,亚硝酸盐清除率和亚硝胺合成阻断率为评价指标,优化生姜中清除亚硝酸盐和阻断亚硝胺合成的有效成分提取工艺,研究结果表明:超声辅助提取效果最好,最佳工艺参数料液比1︰5 (g/mL)、超声功率171W及超声时间为30 min,此条件下得到生姜提取物亚硝酸盐清除率和亚硝胺抑制率分别为45.81%和24.56%。  相似文献   

10.
采用响应面法优化菟丝子中总黄酮的提取工艺。在单因素实验的基础上,以乙醇浓度、提取温度、料液比、提取时间为自变量,总黄酮得率为因变量,运用Box-Behnken设计-响应面优化菟丝子中总黄酮回流提取工艺。并通过菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子自由基的清除作用来评价其抗氧化活性。结果表明:菟丝子总黄酮最佳提取工艺条件为乙醇浓度90.0%、提取温度70℃、料液比1:15 g/mL、提取时间100 min。在此条件下,菟丝子总黄酮得率为(34.65±0.02) mg/g,与模型预测值(34.37 mg/g)相对误差为0.81%,说明回流提取菟丝子总黄酮的工艺稳定可靠。菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.067、7.209、0.119 mg/mL,抗坏血酸对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.082、1.731、0.054 mg/mL,体外抗氧化试验结果表明,菟丝子总黄酮对DPPH自由基具有较强的清除能力,明显高于抗坏血酸;而对羟自由基、超氧阴离子具有一定的清除能力,但清除能力低于同浓度的抗坏血酸。  相似文献   

11.
以构树根皮为原料,通过单因素实验考察不同因素对构树根皮总黄酮和多酚提取量的影响。运用DesignExpert 11软件设计响应面法优化构树根皮乙醇回流提取工艺,并进行工艺验证。最后对提取得到的构树根皮乙醇提取物进行DPPH·、ABTS+·、羟自由基清除能力和总还原能力的测定,评价其抗氧化活性。响应面分析表明,构树根皮总黄酮和多酚的最佳提取工艺为提取温度75℃、提取时间117 min、料液比1:16 g/mL、乙醇浓度70%。此条件下,构树根皮总黄酮和多酚提取量分别为23.93±0.30 mg/g和14.69±0.56 mg/g,与预测理论值接近。抗氧化实验表明,构树根皮乙醇提取物对DPPH·、ABTS+·和羟自由基的半数清除浓度(IC50)分别为5.256μg/mL、0.259 mg/mL和0.310 mg/mL,且清除能力与其浓度呈现一定的量效关系。当提取物浓度为1.0 mg/mL时,总还原能力达到1.484±0.062。此优化实验有效可行,构树根皮乙醇提取物具有较强的抗氧化活性。本研究为构树资源的综合利用提供了一定的理论依据。  相似文献   

12.
目的:优化黑老虎花总黄酮提取工艺及研究其体外抗氧化活性。方法:通过单因素实验(超声时间、料液比、乙醇浓度、超声温度)及正交试验优化黑老虎花总黄酮的最佳提取工艺;评估最优条件下黑老虎花总黄酮对ABTS、DPPH自由基的清除能力。结果:超声辅助提取最优工艺为:全开期(6月份)、超声时间45 min、料液比1:30 mg/mL、超声温度60 ℃、乙醇浓度85%,该条件下提取量为19.25 mg/g。在0.8 mg/mL,最优条件下黑老虎花总黄酮对DPPH自由基清除率为82.1%,清除能力为维生素C的87.9%;在0.4 mg/mL,对ABTS自由基清除能力与维生素C相当。黑老虎花总黄酮对DPPH、ABTS自由基的IC50分别为0.13、0.046 mg/mL。结论:该提取方法可行,提取工艺条件可靠,黑老虎花总黄酮可作为天然抗氧化剂开发来源。  相似文献   

13.
鼠曲草总黄酮的抗氧化活性研究   总被引:1,自引:0,他引:1  
[目的]研究鼠曲草总黄酮的抗氧化活性。[方法]分别采用DPPH自由基法、羟基自由基法、对亚硝化反应的抑制作用和抗脂质氧化四种方法研究了鼠曲草总黄酮的抗氧化活性。[结果]当鼠曲草总黄酮浓度在13.33μg/mL 133.3μg/mL和10.67μg/mL 127.97μg/mL范围内,其对DPPH自由基和羟基自由基的清除率分别为7.09%55.71%和40.08%83.93%,且都存在明显的量效关系;0.12mg/mL的鼠曲草总黄酮溶液12mL对亚硝胺合成的阻断率可达69.66%,对NaNO2的清除率可达70.71%;鼠曲草总黄酮清除DPPH自由基、清除羟基自由基、阻断亚硝胺合成、清除NaNO2的IC50值分别为118.2μg/mL、16.3μg/mL、33.4μg/mL、17.8μg/mL。同时,质量浓度0.05%的鼠曲草总黄酮和0.02%的TBHQ的抗大豆油氧化能力相接近。[结论]鼠曲草总黄酮是一种天然有效的抗氧化剂,可用于保健食品、药品开发。  相似文献   

14.
针对食用槟榔加工后槟榔籽被当作废弃物而基本无大规模利用的问题,本研究以食用槟榔加工后的废弃籽为研究对象,75%的乙醇溶液为提取溶剂,超声辅助提取,得到加工后槟榔籽75%乙醇提取物(processed seed extraction,PSE),测定其总多酚、总黄酮和原花青素含量。采用DPPH法、ABTS+法和Fe3+还原法3种测定方法对槟榔提取物体外抗氧化活性进行评价。本文还研究了PSE对α-葡萄糖苷酶活力的抑制能力。结果表明,PSE含有丰富的多酚和黄酮等活性物质,其中,总多酚含量为(127.29±5.16)mg 没食子酸/g提取物、总黄酮含量为(421.84±13.82) mg 芦丁/g提取物,原花青素含量为(87.83±6.60) mg儿茶素/g提取物。PSE检测到44种黄酮类化合物,其中儿茶素相对含量高达77.27%。PSE具有一定的自由基清除力,清除DPPH自由基和ABTS+自由基的IC50值分别为(310.10±0.62)和(150.10±11.57) μg/mL。另外,PSE表现出较强的α-葡萄糖苷酶抑制能力,其对α-葡萄糖苷酶活力的抑制能力(IC50值为(90.10±1.89) μg/mL)显著(P<0.05)强于阳性对照阿卡波糖(IC50值为(453.60±4.02) μg/mL)。因此,回收再利用食用槟榔加工后的槟榔籽非常有必要。  相似文献   

15.
采用溶剂萃取法对托盘根水提物中的活性物质进行萃取,并测定不同溶剂萃取物中总黄酮、总皂苷和总酚酸的含量,运用DPPH、ABTS和超氧阴离子等体外抗氧化活性模型,研究托盘根不同溶剂萃取物的体外抗氧化活性。结果显示,托盘根正丁醇萃取物中总黄酮、总皂苷、总酚酸含量分别为5.06%、7.41%、6.18%,高于氯仿萃取物和乙酸乙酯萃取物。体外抗氧化活性实验表明,乙酸乙酯萃取物清除DPPH和超氧阴离子的作用最强,IC50分别为94.64 μg/mL和50 μg/mL。正丁醇萃取物清除ABTS的作用最强,IC50值为66.43 μg/mL。结论:托盘根提取物中含有黄酮类、皂苷类、酚酸类成分,氯仿萃取物、乙酸乙酯萃取物和正丁醇萃取物具有较好的体外抗氧化活性,为进一步开发托盘根为天然抗氧化剂或健康食品提供理论基础。  相似文献   

16.
莫一凡  姚凌云  冯涛  宋诗清  孙敏 《食品工业科技》2020,41(12):186-191,220
本研究基于单因素实验并结合Box-Behnken设计优化闪式提取无花果总黄酮的工艺,通过考察乙醇体积分数、提取电压、液料比以及提取时间等因素对总黄酮提取的影响,获得无花果总黄酮闪式提取的最佳条件,并对其抗氧化活性进行了研究。结果表明,响应面优化无花果总黄酮的最佳提取工艺条件为:乙醇体积分数50%,液料比50:1 mL/g,提取时间80 s,提取电压150 V。在此条件下无花果总黄酮的提取量为(36.94±0.02) mg/g,与预测值36.98 mg/g误差仅为0.103%,证实了结果的准确可靠。抗氧化实验显示无花果总黄酮对DPPH自由基的清除效果优于抗坏血酸,而对ABTS+自由基的清除效果弱于抗坏血酸,其对OH自由基清除的IC50为0.098 mg/mL,与抗坏血酸(IC50为0.159 mg/mL)相比,黄酮对OH自由基的清除效果更好。闪式提取无花果总黄酮提取量较高且耗时更短,表明闪式提取法应用于无花果黄酮提取更具优势。无花果总黄酮具有较好的抗氧化活性,有望为功能性食品或保健品的开发提供理论基础。  相似文献   

17.
利用超临界CO2方法萃取石榴皮中总黄酮、三萜类,然后超声波辅助提取萃余物中黄色素。采用正交试验探究萃取时间、压力、温度、夹带剂浓度对总黄酮、三萜类及对超临界残渣黄色素提取率的影响,得到最优工艺条件。超临界萃取总黄酮最优条件为萃取时间70 min,压力30 MPa,温度85℃,夹带剂浓度90%,总黄酮提取率为12.482%,此时萃余物黄色素提取率为5.870%,同时检测到使用超声波辅助提取萃余物黄色素,其提取率极显著高于微波辅助法(P<0.01)。黄色素抗氧化活性检测DPPH自由基清除能力及ABTS+自由基清除能力分别为(27335.16±8.5501)μmol FERA/g和(4164.10±4.6576)μmol Trolox/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号