首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
树脂提纯五倍子中没食子酸的研究   总被引:1,自引:0,他引:1  
目的:研究树脂分离纯化五倍子中没食子酸的工艺,为工业化生产提供实验依据。方法:选取10种型号的树脂进行纯化实验,利用静态吸附和动态吸附的方法,研究树脂纯化五倍子中没食子酸的工艺条件。结果:D301型离子交换树脂能更有效地纯化没食子酸。当上样浓度为3.316mg/mL,速率为1mL/min,上样液体积为12BV时,树脂达到动态饱和吸附。再用18BV70%乙醇,以1mL/min的速率可以洗脱完全。经过树脂的纯化,没食子酸的纯度由原来的42.4%提高到68.8%。结论:树脂D301离子交换树脂对五倍子中没食子酸有一定的纯化作用,但效率一般。  相似文献   

2.
为更好地将离子交换树脂应用于大豆异黄酮的分离纯化,研究了乙醇含量、pH、温度、初始浓度等条件对D301阴离子交换树脂吸附分离大豆异黄酮的影响。静态吸附实验结果表明,该树脂在以水为溶剂、pH 8左右、40℃时对大豆异黄酮有最好的吸附效果。穿透曲线实验表明,动态饱和吸附量受温度影响较大,当柱温为50℃、初始浓度C07.03 mg/mL时,饱和吸附量为105.0 mg/g干树脂。洗脱曲线实验表明,采用体积分数75%乙醇洗脱,异黄酮回收率为89.3%,产品中大豆异黄酮含量高达56.0%,含量比原料提高了十几倍。表明D301阴离子交换树脂对大豆异黄酮的分离纯化具有较好的选择性和应用前景。  相似文献   

3.
大孔树脂吸附纯化青钱柳叶三萜化合物   总被引:2,自引:0,他引:2  
为得到纯度较高的青钱柳叶三萜化合物,采用大孔树脂吸附法对青钱柳叶三萜粗提物进行纯化研究。静态吸附实验结果表明,AB-8树脂对青钱柳叶三萜化合物吸附、解吸性能较好,比饱和吸附量为77.49mg/g,解吸率为85.44%,总回收率可达72.01%。AB-8树脂动态吸附-解吸实验表明:上柱流速增大,吸附率呈降低趋势;随着上柱液质量浓度增大,吸附率先升后降;95%乙醇洗脱效果较好,10BV为合理用量;随着洗脱流速增大,洗脱液峰浓度降低,洗脱率减小,综合考虑以1.5mL/min较为适宜。经AB-8树脂纯化后,三萜类物质纯度可达44.30%。  相似文献   

4.
碱性树脂分离丁二酸性质研究   总被引:3,自引:0,他引:3  
针对厌氧发酵体系,选用碱性阴离子交换树脂对丁二酸进行了吸附分离研究。通过静态吸附实验筛选得到了201强碱和D301弱碱树脂,其吸附量分别为150mg/g和300mg/g。分别测定了上述2种树脂对丁二酸的吸附速率曲线和吸附等温线,讨论了吸附平衡的主要影响因素。结果表明:在pH4~5条件下,强碱201树脂具有较好的吸附性能,确定了201树脂对丁二酸的最适操作条件为固液比为1(g)∶20(mL),pH4.14。同时,对201树脂的动态吸附、洗脱特性进行了初步的研究。  相似文献   

5.
黄思梅  张镜 《食品科学》2009,30(22):77-80
阴香花色苷粗提物石油醚除脂后,以大孔吸附树脂DA201、DM301、DS401、D101 和 DM-18 进行了纯化技术的研究。静态吸附实验结果表明:DM-18 对阴香花色苷的吸附力最强,吸附量57.93mg/g,静态吸附平衡时间120min,80% 乙醇溶液的解吸率88.47%。DM-18 吸附花色苷动态解吸参数正交试验结果是:70% 乙醇最适洗脱剂、流速0.75BV/h 及pH3.0。  相似文献   

6.
大孔树脂分离纯化横山老黑豆酚类物质   总被引:1,自引:0,他引:1       下载免费PDF全文
比较8种大孔树脂对横山老黑豆酚类化合物的静态吸附和解吸特性,筛选出分离最佳的大孔树脂,分析静态吸附动力学曲线和最佳的乙醇解吸体积分数,优化不同的样品质量浓度和不同上样流速动态吸附工艺参数。HPLC方法确定8种酚酸含量以及5种异黄酮含量。结果表明,NKA-9大孔树脂的静态吸附和解吸对横山老黑豆酚类化合物的效果最好,静态吸附4 h可达到平衡,乙醇解吸体积分数为70%。动态吸附和解吸参数:样品上样质量质量浓度为1.96 mg/mL,上样流速为2.14 BV/h。HPLC分析和鉴定NKA-9大孔树脂分离纯化前后的横山老黑豆酚类物质种类没有变化,含量降低很少。横山老黑豆酚类物质中原儿茶酸、绿原酸、咖啡酸、大豆苷和染料木苷含量较高。  相似文献   

7.
以鸡冠中提取的透明质酸(HA)粗提物为原料,通过静态吸附及解析试验确定选用201×7型阴离子交换树脂,通过动态吸附及解析实验,确定透明质酸最佳纯化条件为:HA粗提物与树脂体积比为4∶1;吸附时间为45 min;洗脱剂浓度为0.6 mol/L NaCl溶液;洗脱流速为1.0 m L/min;洗脱剂用量与树脂体积比为4∶1。对纯化后的物质进行紫外光谱检测,结果表明纯化后物质与标准品峰型一致,证明纯化后物质为透明质酸;粗提物的纯化率为26%,纯化物的纯化率为89.43%,显著提高了透明质酸的纯化率。  相似文献   

8.
以花生芽为原料,采用大孔树脂纯化其中酚类物质。通过对比7种型号大孔树脂对花生芽多酚的吸附和解吸效果,筛选出AB-8为最佳树脂类型,并对其静态吸附-解吸条件和动态吸附-解吸条件进行优化。结果表明,AB-8大孔树脂对花生芽中酚类物质的最佳静态吸附-解吸条件为:吸附时间6 h、样液pH 3、样液质量浓度2.0 mg/mL、解吸时间6 h、乙醇浓度60%、解吸液pH 3。最佳动态吸附-解吸条件为上样浓度1.0 mg/mL、上样流速1.5 mL/min,乙醇浓度60%、洗脱流速1.5 mL/min。  相似文献   

9.
为了探究菊芋多糖提取液中色素杂质的去除效果,本文采用静态吸附法对六种大孔树脂进行了初步筛选,并研究了D301-G大孔树脂对菊芋多糖色素的静态吸附动力学、静态吸附模型及其吸附热力学,深入探讨了D301-G大孔树脂对菊芋多糖色素的吸附机理。结果表明,在相同的实验条件下,D301-G大孔树脂与其它树脂相比脱色效果最好,吸附菊芋多糖色素速率较快,多糖的损失率最小,脱色率可达到79.63%,多糖保留率为92.28%。此外D301-G大孔树脂对菊芋多糖色素的吸附过程符合准二级吸附动力学方程,主要受颗粒扩散阻力的影响。等温吸附实验表明,在293、303和313 K时Freundlich等温线模型较Langmuir模型更为准确地描述D301-G大孔树脂的吸附行为,它对色素分子的吸附可能是多分子层的。热力学方程表明D301-G大孔树脂吸附过程是一个吸热过程,吸附焓变ΔH 0、吸附自由能变ΔG 0、吸附熵变ΔS 0。  相似文献   

10.
利用AB-8大孔树脂对糖厂混合汁浮渣中多酚物质进行提取,基于静态吸附和动态吸附的动力学特性研究,对相关工艺条件进行了筛选。结果表明:上样流速1 mL/min、浓度2.50 mg/mL、用体积分数为70%乙醇洗脱,AB-8大孔树脂可较好的分离纯化糖厂混合汁浮渣所含的多酚。  相似文献   

11.
为优化大孔树脂纯化黄芪毛蕊异黄酮提取物的最佳工艺条件,比较七种不同类型大孔树脂(H103、D101、AB-8、DM130、HPD-400、DM301、HPD-600)的静态吸附-洗脱性能,筛选合适树脂型号后,采用单因素与响应面试验确定最佳纯化工艺条件。结果表明,HPD-400树脂对毛蕊异黄酮的吸附纯化效果最佳。随着温度的升高,树脂吸附量下降,吸附过程符合二级动力学模型特征。大孔树脂纯化黄芪毛蕊异黄酮的最佳工艺为:质量浓度为2.97 mg/mL,pH4.9的毛蕊异黄酮提取液60 mL以1 mL/min流速上样至HPD-400树脂后,经140 mL体积分数为79.8%乙醇溶液,以1 mL/min流速洗脱,产物中毛蕊异黄酮含量由2.17%提高至10.36%,约为纯化前4.8倍。因此,该工艺条件适于黄芪毛蕊异黄酮纯化。  相似文献   

12.
SP825大孔吸附树脂分离提取苦参碱的研究   总被引:2,自引:0,他引:2  
霍清  林强 《食品科学》2007,28(11):134-138
目的:筛选适合分离纯化苦参碱的大孔吸附树脂并确立纯化工艺参数。方法:采用紫外可见分光光度法,静态下考察了7种大孔吸附树脂SP825、D4020、D301R、D152、D201、AB-8和NKA-9的吸附性能。其中SP825吸附量最大,为706.19mg/g。所以选择SP825进行不同浓度的纯化差异考察,并以Frendlich和Langmuir公式拟合进行拟和,拟和效果良好。进一步进行动态研究可由吸附动力曲线得SP825在40min内达平衡。进行洗脱实验由脱附曲线可知乙醇洗脱效果最佳,洗脱条件为:用4BV的50%乙醇进行洗脱,解吸率为81.646%。对苦参碱粗品进行提纯,收率达到27.59%。结论:SP825型大孔吸附树脂综合性能最好,适合于苦参碱的分离纯化。  相似文献   

13.
树脂法分离纯化荔枝核黄酮   总被引:1,自引:1,他引:0  
为了分离、纯化荔枝核黄酮,比较了4种大孔树脂的静态吸附过程,筛选出适合吸附荔枝核黄酮的树脂;研究了荔枝核黄酮在大孔吸附树脂上的动态吸附特性,并确定分离荔枝核黄酮的适宜条件。结果表明:HPD800大孔吸附树脂对荔枝核黄酮有较好的吸附分离性能,其对荔枝核黄酮的静态吸附平衡时间为10 h;在25℃条件下,通过吸附等温线,Langmuir模型比Freundlich模型能够更好的描述荔枝核黄酮在HPD800树脂上的吸附平衡过程,所得回归方程为:C/Q=C/434.78+1/1.35×434.78(R2=0.999 3),其相关系数R>0.99。吸附溶液适宜的pH值为5.0。确定树脂柱的较佳操作条件为:流速3.0 mL/min,荔枝核黄酮浓度30.81 mg/mL。  相似文献   

14.
原花青素在X-5树脂上吸附性能的研究   总被引:2,自引:0,他引:2  
研究了葡萄籽提取液中的原花青素在X-5大孔吸附树脂上的吸附行为。对静态吸附特性的研究表明,在实验条件下吸附等温线符合Freundlich吸附等温方程式。当平衡质量浓度为180mg/mL时,吸附平衡时间约为3h。对动态吸附特性的研究表明,当以0.5BV/h流量通过吸附床时,动态吸附量比静态吸附量低16%。用40%乙醇溶液洗脱吸附在树脂上的原花青素,洗脱率为86.1%,原花青素含量高于80%。  相似文献   

15.
采用HZ818大孔吸附树脂对红豆杉浸膏中的紫杉醇成分进行吸附和洗脱试验,同时利用液质联用进行分析检测,确定了其最佳工艺参数。结果表明,HZ818树脂对紫杉醇有良好的吸附分离效果。优化工艺条件为:样品溶于体积分数40%甲醇,以1.5mL/min过柱,体积分数75%甲醇淋洗,体积分数85%甲醇以0.5mL/min洗脱,紫杉醇的质量分数从原浸膏中的1.02%提高到8.1%,回收率达98.6%。  相似文献   

16.
大孔树脂纯化碱提花生壳总黄酮   总被引:2,自引:0,他引:2  
初步探讨了大孔树脂纯化碱提花生壳总黄酮的工艺条件,对大孔树脂的种类及其静态吸附、解吸附条件进行初步探讨。通过静态吸附和解吸附的比较,从6种不同型号的大孔吸附树脂中选出DM301进行静态吸附解吸动力学,发现其吸附解吸平衡时间分别为3 h和5 h。通过单因素实验,DM301的最佳吸附条件为20℃、pH8.5,样液中花生壳总黄酮初始浓度为(0.138±0.01)mg/mL;最佳解吸条件为解吸液乙醇浓度80%,解吸液pH9.5,解吸液用量7.5 mL/g湿树脂。  相似文献   

17.
研究了XDA-1B大孔吸附树脂柱层析法对鼠尾藻多酚吸附解析条件。结果表明:最佳静态吸附条件为:温度30℃、样品中多酚浓度2.5 mg/mL,XDA-1B大孔吸附树脂适用于鼠尾藻多酚的分离纯化。上样流速2.0 mL/min,洗脱流速2.0 mL/min条件下,XDA-1B大孔吸附树脂对鼠尾藻多酚的吸附和脱附速率较快,2 h之后趋向吸附饱和脱附完全。Freundlich吸附经验公式适于其吸附曲线模拟。  相似文献   

18.
大孔吸附树脂纯化紫苏粕多糖水提液的研究   总被引:1,自引:0,他引:1  
分别比较了DM301、DM130、NKA-9、NKA-Ⅱ、H103、ADS-17、D101、X-5 8种大孔吸附树脂对紫苏粕多糖提取液的脱蛋白和脱色效果的影响。在静态吸附试验的基础上,筛选较好的树脂进行动态吸附试验研究。结果显示,D101树脂对紫苏粕多糖提取液中的蛋白质和色素的吸附最多,表明其脱蛋白和脱色效果最好,且多糖的回收率最高,因此D101树脂最适于紫苏粕多糖的纯化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号