首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
研究了HClO4和HNO3体系中双羟基脲(DHU)与HNO2的反应动力学.结果表明,HClO4和HNO3体系下DHU与HNO2的反应动力学速率方程式均为-dc(HNO2)/dt=k·c(HNO2 )1·c(DHU )0·c(H+)-0.15,反应对DHU均呈零级.在HClO4体系下,θ=15 ℃, I=0.5 mol/kg时,反应速率常数k1=(2.37±0.04) mol0.15/(L0.15·min);在HNO3体系下,θ=10 ℃, I=0.5 mol/kg时,反应速率常数k2= (1.29±0.06) mol0.15/(L0.15·min)(n=8).同时考察了反应温度对反应速率的影响,结果表明,随着温度的升高, 反应速率均明显加快, HClO4和HNO3体系对应的反应活化能分别为68.2 kJ/mol和76.8 kJ/mol.在HClO4和HNO3体系中,随着离子强度的增加,氧化还原反应的表观速率常数k'均下降.过量的DHU在HNO3溶液中可以很好的稳定Pu(Ⅲ)48 h而不被氧化.  相似文献   

2.
分别在HClO4和HNO3体系中用分光光度法研究了乙异羟肟酸(AHA)与HNO2的反应动力学,得到其反应动力学速率方程式为:—dc(HNO2)/dt=k.c(HNO2)1.c(AHA)0.75.c(HClO4)0.5和—dc(HNO2)/dt=k.c(HNO2)1.c(AHA)0.25.c(HNO3)1。在HClO4体系中,当θ=5℃,I=0.5 mol/kg时,反应速率常数k=(2.37±0.21)L1.25/(mol1.25.s);在HNO3体系中,当θ=10℃,I=0.5 mol/kg时,反应速率常数k=(0.482±0.048)L1.25/(mol1.25.s)。同时考察了反应温度对反应速率的影响。结果表明,在HClO4和HNO3体系中,随着温度的升高,反应速率均明显加快,反应活化能分别为99.0 kJ/mol和46.9 kJ/mol;随着离子强度的增加,氧化还原反应的表观速率常数k′均有所增加,但增幅不明显。  相似文献   

3.
采用分光光度法研究硝酸介质中单甲基肼(MMH)与亚硝酸(HNO2)的反应。HNO2和MMH反应动力学速率方程为-dc(HNO2)/dt=kc(H+)c1.1(NO-3)c1.1(MMH)c(HNO2)。当t=2.6℃、c(NO-3)=0.50mol/L时,反应速率常数k=(115±2)(mol/L)-3.2•s-1,反应活化能Ea=(37.8±0.1)kJ/mol。研究结果表明:在硝酸介质中,甲基肼与亚硝酸能快速反应;提高酸度、MMH浓度或硝酸根浓度均有利于亚硝酸的还原。  相似文献   

4.
单甲基肼还原Np(Ⅴ)的反应动力学   总被引:1,自引:1,他引:0  
用分光光度法研究了HNO3介质中单甲基肼(MMH)还原Np(Ⅴ)的动力学行为.通过考察还原剂浓度和酸度等条件对Np(Ⅴ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),在温度θ=35℃,离子强度为2 mol/L时,反应速率常数k=0.004 79(mol/L)-1.36/min.研究了离子强度、c(U(Ⅵ))和温度对反应的影响.结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响;反应活化能为60.43 kJ/mol,随着温度的升高,反应速率加快.并在此基础上推测了可能的反应机理.  相似文献   

5.
本工作研究HNO3体系下AHA与HNO2的反应动力学。研究得到该反应的反应动力学速率方程式为-dc(HNO2)/dt=kc(HNO2)c0.25(AHA)c(HNO3)。在t=10℃、I=0.5mol·kg-1条件下,反应速率常数k=(0.4814±0.0375)L1.25·mol-1.25·s-1。实验研究了反应温度对反应速率的影响。结果表明,随着反应温度的升高,反应速率明显加快,相应的反应活化能?E=46.92kJ·mol-1。在离子强度I=0.5~3.0mol·kg-1范围内,氧化还原反应的表观速率常数k′随离子强度I的增加而有所增大,但增大幅度不甚明显。对该反应的机理进行了简要讨论。高氯酸体系中AHA与HNO_2…  相似文献   

6.
采用分光光度法研究了0.1~0.4mol/L稀硝酸体系中N,N-二甲基羟胺(DMHAN)与亚硝酸的反应动力学,包括硝酸浓度、亚硝酸浓度、二甲基羟胺浓度、离子强度、温度等条件的影响。稀硝酸体系中二甲基羟胺与亚硝酸反应的动力学方程为:-dc(HNO0.452)/dt=kc1.26(HNO2)c0.85(DMHAN)c(H+)在20℃,离子强度为0.50mol/L时,k=3.09(mol/L)-1.56·s-1,Ea≈55.1kJ/mol;反应中,亚硝酸与二甲基羟胺的表观反应计量比约为2.5∶1。  相似文献   

7.
二甲基羟胺还原Np(Ⅵ)的反应动力学   总被引:2,自引:2,他引:0  
用分光光度法研究了HNO3介质中二甲基羟胺(DMHAN)还原Np(Ⅵ)的动力学。通过考察还原剂浓度和酸度等条件对Np(Ⅵ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(DMHAN)/c0.6(H+),在温度θ=25℃、离子强度I=4.0 mol/kg时,速率常数k=289.8(mol/L)-0.4/min。研究了离子强度c、(U(Ⅵ))和温度等因素对反应的影响。结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响,25℃时反应活化能为53.3 kJ/mol;随着温度的升高,反应速率加快。并在此基础上推测了可能的反应机理。  相似文献   

8.
在硝酸介质中,利用分光光度法研究了亚硝酸与特丁基肼的氧化还原反应动力学。考察了特丁基肼浓度、酸度、离子强度、温度、UO22 离子浓度对反应速率的影响,实验得出的反应速率方程可表示为:-dc(HNO2)/dt=kc(HNO2)c(H )1.36c(TBH) 在25℃时,k=3.80×103(mol/L)-2.36·min-1,反应活化能为60.72kJ/mol。离子强度和UO22 离子浓度对反应速率基本上无影响。  相似文献   

9.
本工作研究HNO3体系下AHA与HNO2的反应动力学。研究得到该反应的反应动力学速率方程式为-dc(HNO2)/dt=kc(HNO2)c0.25(AHA)c(HNO3)。在t=10℃、I=0.5mol·kg-1条件下,反应速率常数k=(0.4814±0.0375)L1.25·mol-1.25·s-1。实验研究了反应温度对反应速率的影响。结果表明,随着反  相似文献   

10.
用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ )的动力学。考察了特丁基肼浓度、酸度、NO-3 浓度、UO2 + 2 浓度、Fe3 + 浓度以及温度等对反应速率的影响。求出了反应动力学方程 :-dc(Np(VI) ) /dt =kc(Np(Ⅵ) )c0 .9(TBH) /c0 .75(H+ )。 2 5℃时的速率常数 :k=5 .4 4 (mol/L) -0 .15·min-1。反应的表观活化能 :Ea=6 1.2kJ/mol。在所研究的浓度范围内 ,NO-3 ,UO2 + 2 ,Fe3 + 对反应速率影响较小 ;而升高温度能显著提高反应速率  相似文献   

11.
邵华  包伯荣  韩景田  杨永会  孙思修 《核技术》2002,25(12):1051-1057
利用恒界面池法研究了辛酰哌啶 (OP)甲苯溶液从硝酸介质中萃取铀酰的动力学。结果发现在恒定扩散条件下 ,速控步骤为在界面区域靠近水相一边的萃合物的生成反应 :UO2 (NO3) ++OP·HNO3(i) =UO2 (NO3) 2 ·OP(i) +H+。正、逆向反应的活化能分别为 :E+a =3.2 0kJ/mol和E- a =2 6 .2 5kJ/mol,萃取反应的热效应为ΔH =- 2 3.0 5kJ/mol。萃取过程形成了UO2 (NO3) 2 ·(OP)和UO2 (NO3) 2 ·(OP) 2 两种萃合物 ,第二种萃合物的形成发生在有机相  相似文献   

12.
研究了在 3 0 %TBP/煤油和HNO3 水溶液混合相中羟基脲 (HU)还原Pu(Ⅳ )的动力学。研究表明 :HU可还原Pu(Ⅳ )到Pu(Ⅲ ) ,混合相中的还原速率方程可表示为 -dc(Pu(Ⅳ ) ) /dt=kc(HU)·c- 3 2(HNO3 )c2 mix(Pu(Ⅳ ) )c- 1mix(Pu(Ⅲ ) ) ,其中 ,k为速率常数 ,15℃时 ,k =( 896± 5 9)mol2 3 ·L- 2 3 ·min- 1。以HU作Pu(Ⅳ )的还原剂 ,用离心试管模拟了Purex流程 1B槽中的U/Pu分离 ,进行了 16级逆流串级实验。串级实验中 ,U中去Pu的分离系数达 5 4× 10 4 ,Pu中去U的分离系数为 1 8× 10 5,每kgU产品中的Pu含量约为 11μg。  相似文献   

13.
研究了Pu存在条件下HNO2氧化U(Ⅳ)的反应,并考察了HNO2浓度、反应温度、HNO3浓度、Pu浓度对U(Ⅳ)氧化速率的影响。结果表明:Pu对HNO2氧化U(Ⅳ)的反应具有显著催化作用;获得了Pu催化条件下HNO2氧化U(Ⅳ)的动力学方程:-dc(U(Ⅳ))/dt=kc(U(Ⅳ))c1.3(HNO3)c1.3(NO-2),得到了29℃时的反应速率常数k=(0.69±0.04)L2.6/(mol 2.6·min)。并对反应历程进行了探讨。  相似文献   

14.
采用电动势法研究了硝酸体系中硝酸羟胺(HAN)还原Fe3+离子的反应动力学,得到了动力学表观速率方程-dc(Fe3+)/dt=kc0.62(HAN)c-2.80(H+)c(Fe3+)c-0.85(Fe2+);当温度为50℃、离子强度I=1.0mol/L时,表观速率常数k=(2.9±0.1)×10-6(mol/L)3.02/s,反应表观活化能Ea=(125±3)kJ/mol。硝酸根的存在对反应起到抑制作用,离子强度的增大对反应有促进作用。  相似文献   

15.
利用分光光度法研究了高氯酸体系中羟胺乙酸(HAAA)与亚硝酸(HNO2)的还原动力学,其动力学方程式为-dc(HNO2)/dt=kc0.87(HAAA)c2.11(H+)c0.51(ClO-4),其中,在1℃时,反应速率常数k=(3.63±0.35)(mol/L)3.49/s,活化能Ea=(72.6±3.0)kJ/mol.同时还研究了羟胺乙酸浓度、H+浓度、高氯酸根浓度、温度对羟胺乙酸与亚硝酸反应速率的影响.结果表明,增加羟胺乙酸浓度、H+浓度、高氯酸根浓度和提高温度,HNO2还原速度加快.  相似文献   

16.
用分光光度法研究了高氯酸体系中甲醛肟(FO)与亚硝酸的还原动力学,其动力学方程式为:-dc(HNO2)/dt=kc(HNO2)c1.32(FO)c0.96(Cl O4-),其中在1.0℃时,k=(7.55±0.50)(mol/L)2.28/s,活化能Ea=(65.16±6.52)kJ/mol。增加甲醛肟浓度、高氯酸根浓度和温度,HNO2还原速度增加,H+浓度对还原反应基本无影响。  相似文献   

17.
采用分光光度法研究HNO2与N,N-乙基,羟乙基羟胺(EHEH)在高氯酸介质中的反应动力学,得到了反应动力学速率方程。研究结果表明:当温度为25℃、离子强度为1.0mol/L时,反应速率常数k=3.43(mol/L)-0.93•min-1,反应活化能Ea=(50.0±2.5)kJ/mol;升高温度、提高EHEH和高氯酸浓度,反应速率加快。  相似文献   

18.
The kinetics of reaction of AHA with nitrous acid is studied in HNO3 medium. The reaction rate equation was obtained as following:- dc(HNO2)/dt=kc(HNO2)c0.25(AHA)c(HNO3). In the case of t=10 ℃,I=0.5 mol·kg-1,the reaction rate constant k is (0.481 4 ± 0…  相似文献   

19.
草酸钚(Ⅳ)溶解度的研究   总被引:1,自引:1,他引:0  
研究了在 (2 5± 0 2 )℃条件下 ,草酸钚 (Ⅳ )沉淀沉降达到平衡所需的时间和草酸钚 (Ⅳ )沉淀在不同浓度HNO3 H2 C2 O4 混合液中的溶解度。研究结果表明 ,将 1mL 1mol/LH2 C2 O4 溶液加到9mL含 0 9mg/mLPu(Ⅳ )的 4 0mol/LHNO3溶液中 ,混匀 5min后得到黄绿色的草酸钚 (Ⅳ )晶体 ,静置 2 2h以上 ,沉淀沉降达到平衡 ;草酸钚 (Ⅳ )沉淀在HNO3 H2 C2 O4 混合液中的溶解度随混合液中H2 C2 O4 浓度增大而增大 ,随混合液中的HNO3 浓度增大而减小 ;在TRPO流程中Np ,Pu的反萃液酸度 (0 5 6mol/LHNO3 0 3mol/LH2 C2 O4 )下 ,草酸钚 (Ⅳ )沉淀的溶解度为S(Pu(Ⅳ ) )≈ 110mg/L。TRPO萃取流程热实验溶液中的 ρ(Pu(Ⅳ ) ) 10 0mg/L ,因此 ,Pu(Ⅳ )在该溶液中不会产生沉淀  相似文献   

20.
将最小二乘法应用于分光光度解谱分析,在波长350~500 nm范围内,利用U-HNO3-HNO2的吸收谱分别建立了HNO3水溶液和30%TBP煤油中U、HNO3、HNQ2的分析方法.在水相ρ(U)=0.95~74.1 g/L、c(HNO3)=3~5 mol/L、c(HNO2)=5×10-4~2×10-3mol/L时,U...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号