首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
针对南方饮用水源水氨氮和有机物浓度季节性上升的特点,开展了活性无烟煤多功能滤池处理高氨氮原水的中试研究。中试处理规模为120 m3/d,滤速为8 m/h,原水氨氮平均浓度为3.1 mg/L。试验结果表明,滤池进水溶解氧浓度不足会导致工艺出水氨氮浓度高于《生活饮用水卫生标准》(GB 5749—2006),同时伴随有亚硝态氮的积累;当采用纯氧曝气提高滤池进水DO至11.9~13.6 mg/L后,活性无烟煤滤池的净水效果大幅提高,出水氨氮<0.1 mg/L,亚硝态氮浓度几乎为零,氨氮全部转化为硝态氮,氨氮有效去除浓度与所需DO浓度的比值平均为1∶4.49。在纯氧曝气条件下,滤池对氨氮的去除率达到97%,对CODMn和UV254的去除率均在44%左右。  相似文献   

2.
高速给水曝气生物滤池预处理微污染原水   总被引:18,自引:2,他引:16  
针对南方地区的微污染原水,采用高速给水曝气生物滤池进行生物预处理,滤速为16 m/h,气水比为0~0.5.原水氨氮为0.04~3.48 mg/L,出水氨氮为0.01~0.48 mg/L,满足<生活饮用水卫生标准>(GB 5749-2006).原水CODMn为0.89~5.6 ms/L,出水为0.61~4.3 mg/L,平均去除率为18.9%.高速给水曝气生物滤池采用大颗粒轻质陶粒,去除浊度平均仅6 NTU左右,枯水期由于原水浊度较低,故表现为浊度去除率较高,而丰水期浊度去除率只有普通曝气生物滤池对浊度去除率的1/3左右.滤池24 h过滤水头损失<5 kPa,冲洗前后过滤水头变化量<0.5kPa,适合多座滤池共用鼓风曝气系统.高速给水曝气生物滤池配有下冲洗系统,能够有效地将SS和藻类全部洗出滤池,确保过滤水头能够长期稳定.该滤池的工程投资约100~130元/m3,运行费用约0.03~0.05元/m3.  相似文献   

3.
在中试条件下,研究了纯氧曝气和活性无烟煤滤池联用对氨氮的去除效果。结果表明,当待滤水氨氮从0.8~1.0 mg/L突然升至约1.7、2.5、3.0 mg/L时,只要保证硝化反应所需的溶解氧浓度,采用活性无烟煤滤池过滤,在0.5~1 h内即可有效去除氨氮,运行12 h时滤后水氨氮分别降至0.05、0.08、0.21 mg/L;在待滤水氨氮为2.8~3.3 mg/L、DO为13.7~14.0 mg/L的条件下持续运行10 d,24 h之后滤后水中基本无亚硝酸盐氮积累,氨氮稳定在0.04~0.08 mg/L;采用微纳米曝气板进行纯氧曝气,去除2.5~3.0 mg/L氨氮所增加的运行成本为0.017~0.021元/m3,因而适用于水厂应对季节性、突发性氨氮污染。  相似文献   

4.
针对南方饮用水源水氨氮季节性、突发性污染的特点,在中试条件下,结合水厂传统制水工艺和活性无烟煤滤池联用纯氧曝气,探讨p H值对氨氮去除效果的影响机理,并进行成本核算,重点考察了砂滤池、活性无烟煤滤池、活性无烟煤联用纯氧曝气三组制水工艺在不调节p H值和调节p H值为7.2、7.4、7.6、7.8、8.0、8.2、8.4、8.6条件下氨氮浓度变化及去除量。结果表明,调节p H值后,对氨氮的去除效果提高。在p H值为8.0时,这三组工艺对氨氮的绝对去除量分别为1.23、1.72、3.05 mg/L,活性无烟煤联用纯氧曝气对氨氮的去除效果最好。投加Na OH调节p H值,待滤水相对于原水p H值下降,滤后水的p H值进一步降低;投加Na OH调节p H值为8.0,成本约为0.031元/m3水,适用于水厂应对季节性、突发性氨氮污染。  相似文献   

5.
通过小试试验利用沉淀池出水,对比研究了两种活性滤料即活性无烟煤和活性炭与两种惰性滤料即石英砂和无烟煤的过滤性能。结果表明,活性无烟煤和活性炭过滤对氨氮的去除率达95%以上,优于石英砂和无烟煤;活性无烟煤和活性炭过滤出水亚硝酸盐氮浓度低于0.05mg/L,优于石英砂和无烟煤;活性无烟煤和活性炭过滤对浊度和颗粒数的去除效果与石英砂和无烟煤相近,出水浊度低于0.5NTU;活性无烟煤和活性炭过滤对CODMn的平均去除率分别为47.4%和50.7%,对UV254的平均去除率分别为25.4%和31.9%,均优于石英砂和无烟煤。两种活性滤料不仅具有传统过滤去除浊度的性能,还具有比传统过滤更好的去除氨氮和有机物的性能,对于受季节性排污影响的传统给水水厂的过滤工艺改造具有重要意义。  相似文献   

6.
活性无烟煤是一种新型滤料,既具有普通滤料的过滤功能,又具备活性炭的特点。研究了活性无烟煤过滤去除氨氮的效能,并与石英砂、无烟煤和活性炭进行了对比。结果表明,四种滤料对浊度的去除率达90%以上,出水浊度均小于0.2 NTU;活性无烟煤和活性炭过滤出水氨氮浓度0.3 mg/L,其去除率平均为94%,石英砂和无烟煤过滤对氨氮的转化不彻底,导致出水亚硝酸盐氮浓度比进水高出0.58 mg/L;活性无烟煤和活性炭对TOC的平均去除率分别为33.4%和38.3%,对UV254的平均去除率分别为43.6%和50.5%。活性无烟煤作为一种新型滤料在生物活性滤池改造领域具有独特优势。  相似文献   

7.
叠式曝气生物滤池预处理高氨氮原水   总被引:5,自引:2,他引:3  
针对南方地区存在季节性高氨氮和有机物污染的水源水,采用叠式曝气生物滤池进行生物预处理.枯水期水温≥5℃,滤速为8 m/h,气水比为0.5~1.5,原水氨氮、CODMn和浊度的周均值分别为5.02~9.45 mg/L、5.79~10.1 mg/L和19.7~63.1 NTU,叠式滤池出水对应指标分别为0.30~0.96 mg/L、3.24~5.85 mg/L和3.83~19.9 NTU(去除率分别为90.3%、42.7%和66.3%),符合<地表水环境质量标准>(GB 3838-2002)的Ⅲ类标准.丰水期滤速为12 m/h,气水比为0.3~0.5,原水氨氮、CODMn和浊度的周均值分别为2.19~3.41 mg/L、5.30~7.56 mg/L和27.3~40.1 NTU,叠式滤池出水对应指标分别为0.18~0.41mg/L、2.87~4.50mg/L和5.43~16.8 NTU(去除率平均为89.3%、40.2%和65.0%),符合GB 3838-2002的Ⅱ类标准.初滤池去除了原水中大部分可滤SS,为曝气生物滤池的稳定运行创造了条件,同时使曝气生物滤池过滤水头损失的24 h变化量不超过2 kPa,满足了多座滤池共用鼓风曝气系统,实现均匀曝气对过滤水头损失的控制要求.叠式曝气生物滤池的工艺投资约为140~180元/m3,运行费用约为0.05~0.07元/m3.  相似文献   

8.
本文研究了浸没式平板陶瓷膜对给水厂高浊度排泥水的处理效能。试验所用排泥水浊度范围在500-5500 NTU,平板陶瓷膜孔径平均值为60nm。结果表明,平板陶瓷膜超滤技术能够有效去除排泥水浊度,出水浊度达到0.2 NTU以下;但是,对于溶解性的COD和氨氮处理效果不明显。适宜的陶瓷膜通量为60 L/(m2·h),排泥水起始浊度为2000NTU左右,曝气量为150 L/min,过滤周期能够达到5小时以上。清水反冲洗能够使陶瓷膜通量恢复,膜污染主要是可逆性质的,主要膜污染物质是190-250 nm粒径的颗粒物。平板陶瓷膜安装简单,操作容易,耐酸碱清洗,寿命长,在给水厂排泥水处理和回收领域具有广阔的应用前景。  相似文献   

9.
以南方某自来水厂待滤水为对象,通过比较纯氧曝气-活性无烟煤滤池与石英砂滤池的出水水质及滤料的生物活性,研究不同滤料的生物活性对滤池去除效果的影响。试验结果表明,纯氧曝气-活性无烟煤滤池长期运行后,其滤料的物理吸附容量已基本饱和,对污染物的去除主要依赖于生物膜的降解和粘附絮凝作用。在8m/h左右的滤速下,纯氧曝气-活性无烟煤滤池对有机物及氨氮都有较高的去除效果,并能有效控制后续消毒工艺中三卤甲烷的生成,其中,TOC的去除率为28.7%,COD_(Mn)的去除率为33.9%,低浓度氨氮能够彻底去除,并且能够将三卤甲烷的生成量降低20.8%,显著提高水厂的出水水质。  相似文献   

10.
为应对南方地区饮用水源存在的氨氮和有机物季节性污染问题,开展了混凝/聚四氟乙烯中空纤维膜/生物活性炭组合工艺中试研究。结果表明,当膜通量为42 L/(m2·h)、反冲洗周期为2 h时,3 d内的跨膜压差稳定在2~4 k Pa。膜化学清洗液中有机物化学分级表明,引起膜污染的有机物主要为亲水性有机物。工艺能有效去除有机物和氨氮,对UV254和CODMn的去除率分别为67.1%和80.2%,对卤乙酸前体物的去除率为50.7%。原水氨氮为2 mg/L时,去除率为78.1%,工艺出水氨氮0.5 mg/L,无亚硝态氮积累,氨氮基本转化为硝态氮。膜和炭滤出水中粒径大于2μm的颗粒数分别低于10和50个/m L,工艺出水的微生物安全性得到有效保障。  相似文献   

11.
采用BAF工艺处理微污染含铁锰地下水,研究了其净化效能和适宜的运行条件.结果表明,在水力负荷为4-5 m3/(m2·h),气水比为3:1-4:1的试验条件下,BAF工艺能有效去除氨氮、锰、铁、CODMn.和浊度.当原水铁含量小于2 mg/L,滤层中部DO在4 mg/L左右时,对氨氮的去除效果最佳.微量Fe2+即可维系滤...  相似文献   

12.
刘成  崔彪  王杰 《中国给水排水》2014,(22):152-155
L水厂是内蒙古自治区B市市区的主要供水厂,供水能力为4.4×104m3/d,目前水厂仅设置无阀滤池用于去除原水中的铁、锰,而对砷的去除效果较差。针对L水厂现有工艺状况及出水水质特征,采用投加除砷药剂后对管式静态混合器、跌水曝气、过滤等工艺进行改造。实际运行结果表明,改造后工艺出水中砷、铁、锰及浊度数值分别稳定在9μg/L、0.05 mg/L、0.02 mg/L、0.4 NTU以内,均满足现行《生活饮用水卫生标准》(GB 5749—2006)。此外,工艺改造成本约为15元/m3,运行成本增加值0.01元/m3。  相似文献   

13.
平板超滤膜在微污染水源水处理中的应用研究   总被引:1,自引:1,他引:0  
为解决微污染水源水处理难题,采用浸没式平板超滤膜进行了超滤直接处理微污染水源水的现场中试研究.结果表明,直接超滤对微污染水源水中浊度的去除率>99.0%,出水浊度<0.1 NTU;对CODMn的去除率为25.8%~46.9%,出水CODMn<2.5 mg/L;对UV254的去除能力相对较低,平均去除率为13.3%;超滤膜跨膜压差的增幅和过滤时间呈较好的线性关系;辅助空气表面冲洗可明显降低跨膜压差的平均增长速率,膜清洗效果明显改善.  相似文献   

14.
通过中试对比研究了石英砂滤料与活性无烟煤滤料去除氨氮、亚硝酸盐氮、浊度的效果。结果表明,不增加待滤水溶解氧,将氨氮去除至0.5mg/L以下,活性无烟煤滤料进水氨氮含量应不高于2.0mg/L,而石英砂滤料应不高于1.0mg/L,且石英砂滤料会造成亚硝酸盐氮含量增加,两种滤料均能将出水浊度控制在0.5NTU以下。  相似文献   

15.
通过中试对比研究了石英砂滤料与活性无烟煤滤料去除氨氮、亚硝酸盐氮、浊度的效果.结果表明,不增加待滤水溶解氧,将氨氮去除至0.5mg/L以下,活性无烟煤滤料进水氨氮含量应不高于2.0mg/L,而石英砂滤料应不高于1.0mg/L,且石英砂滤料会造成亚硝酸盐氮含量增加,两种滤料均能将出水浊度控制在0.5NTU以下.  相似文献   

16.
在5 000 m3/d处理规模的生产性示范工程条件下,开展了高压增氧系统提高待滤水溶解氧浓度、高压增氧系统与活性无烟煤滤池联用去除水源水中氨氮的研究。结果表明,该高压增氧系统的纯氧曝气效率基本保持在90%以上,将待滤水DO从6.3~6.6 mg/L提升至满足去除3~4 mg/L氨氮所需DO的总运行成本为0.040~0.049元/m3;当待滤水氨氮≤3.5 mg/L时,高压增氧系统与活性无烟煤滤池联用,能使滤后水中氨氮浓度降至国标限值(0.5 mg/L)以下。  相似文献   

17.
水体富营养化给饮用水处理带来了很多难题。为了给水厂的升级改造提供参考,开展了预臭氧/常规/超滤组合工艺处理太湖水的试验研究,并分析了超滤膜的污染情况。试验结果显示:组合工艺出水浊度、CODMn、UV254、DOC的平均值分别为0.09 NTU、2.23 mg/L、0.039 cm-1、2.90 mg/L,总去除率分别为97.25%、34.41%、40.48%、28.55%。膜出水中大于2μm的颗粒数平均为16个/mL,未检测出细菌及大肠菌群。此外,组合工艺还能有效去除铁、锰及藻类,其出水含量低于标准限值。与原水直接进行超滤处理相比,组合工艺的跨膜压差增加更平缓。因此,该组合工艺可用于太湖微污染原水的处理。  相似文献   

18.
地下水中氨氮、铁、锰的同步去除及其相互作用   总被引:2,自引:0,他引:2  
在中试规模条件下,考察了接触催化氧化过滤工艺同步去除地下水中氨氮、铁、锰的效果,研究了三者在去除过程中的交互作用。结果表明:该工艺对原水中的氨氮、铁、锰具有良好的去除效果;铁优先于锰和氨氮被去除,提高进水亚铁离子浓度会导致除氨氮滤层向下迁移,出水氨氮浓度不达标,而铁离子对去除锰离子不产生影响的界限浓度为2 mg/L;提高进水锰离子浓度可以显著促进对高浓度氨氮的去除,表明锰质滤膜对氨氮的去除可能起到了催化氧化的作用。  相似文献   

19.
生物除铁除锰滤层的溶解氧需求及消耗规律研究   总被引:6,自引:1,他引:5  
针对高铁、高锰地下水中含有氨氮的问题,进行了生物除铁除锰过程中溶解氧需求及消耗规律的研究.结果表明:弱跌水曝气难以适应含氮地下水的净化对溶解氧的需求,在原水氨氮为1.2 mg/L、铁为15 mg/L、锰为1.5 mg/L左右的条件下,控制溶解氧>7.5 mg/L时,生物滤层才能培养成熟,出水锰离子浓度才能达标;过滤过程中溶解氧主要消耗在上部的45 cm滤层之内,用于铁的去除以及氨氮的硝化,下部除锰生物滤层能否得到充足的溶解氧是决定除锰成败的关键.  相似文献   

20.
通过中试研究了活性无烟煤滤池在纯氧曝气条件下,对高氨氮的耐冲击负荷能力和响应时间。结果表明:进水氨氮在1. 38~1. 75 mg/L时,滤池显示出良好的去除氨氮效能,滤后水氨氮稳定在检出限(0. 02 mg/L)以下,没有NO_2~--N残留,能及时响应且无时间滞后。进水氨氮为2. 46~3. 07 mg/L时,出水平均氨氮为0. 18 mg/L,无NO_2~--N积累且能实现同步响应去除氨氮。进水氨氮在2. 71~3. 07 mg/L时,滤池能同步去除氨氮至0. 30 mg/L左右。进水氨氮在3. 61 mg/L左右时,出水平均氨氮达0. 99 mg/L,出水不达标;无NO_2~--N积累,进、出水NO_2~--N均在0. 020~0. 030 mg/L之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号