首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emission factors of total particulate polycyclic aromatic hydrocarbons (PAHs), Benzo(a)pyrene (BaP), BaP-equivalent doses (BaP(eq)) and Pb for burning three kinds of charcoal were investigated in this study: fast-lighting charcoal, Taiwanese, and Indonesian charcoal (the latter two of which are not fast-lighting). Compared to the burning of Taiwanese and Indonesian charcoal, the burning of fast-lighting charcoal can emit much larger amounts of total PAHs, BaP(eq) and Pb into the atmosphere. The emission factors of total PAHs, BaP and BaP(eq) for broiling meat were noticeably higher than those for broiling vegetables and non-fish seafood. When using Indonesian charcoal to broil meat, the total emission factors of particulate PAHs and BaP were about 15.7 and 0.39 mg/kg, respectively. The total amounts of particulate PAHs and Pb emitted from cookouts during Mid-Autumn Festival were 2881 and 120 g, respectively. Total PAHs and BaP(eq) in PM(10) aerosols on Mid-Autumn Festival nights increased about 1.6 and 1.5 times, respectively, higher than those on non-festival nights. The mean concentration of Pb on the nights of Mid-Autumn Festival increases to about 2.8 times that of non-festival nights.  相似文献   

2.
Particulate air pollution is significantly elevated during the winter in Christchurch, New Zealand, largely attributable to use of wood burners for domestic home heating, topography, and meteorological conditions. Polycyclic aromatic hydrocarbons (PAHs) are a key component of airborne particulate matter (PM) and urinary 1-hydroxypyrene (1-OHP) has previously been used to assess exposure of people to PAHs. We examined urinary 1-OHP in Christchurch male non-smoking schoolchildren (12-18 yr) on two occasions after high pollution events (48 and 72 microg PM(10)/m(3) 24-h average) and two occasions during periods of low pollution (19 and 12 microg PM(10)/m(3)). Concentrations of urinary 1-OHP were significantly elevated in the students during high pollution events (median (mean+/-SD) 0.043 (0.051+/-0.032) and 0.042 (0.060+/-0.092) micromol OHP/mol creatinine respectively) compared with low pollution periods (median (mean+/-SD) 0.019 (0.026+/-0.032) and 0.025 (0.028+/-0.018) micromol/mol creatinine respectively). The observed 1-OHP concentrations are at the lower end of those determined in children and non-occupationally exposed adults in international studies and suggest a generally low exposure to PAHs. The increased urinary 1-OHP concentrations following nights of elevated particulate concentrations in ambient air suggest increased exposure to ambient air pollution during winter time, and could potentially be used as a biomarker of exposure in this population.  相似文献   

3.
In China, traffic policemen have to stand for several hours a day at the road intersections with high vehicle flows. To assess their exposure to airborne carcinogenic polycyclic aromatic hydrocarbons (PAHs) during their working time, a preliminary study was conducted to measure the personal exposure level to PAHs. And a probabilistic incremental lifetime cancer risk (ILCR) model together with the benzo[a]pyrene (BaP) toxic equivalents (BaP(eq)) method was used to conduct health risk assessment. Personal exposure monitors (PEM) were carried by traffic policemen to collect PM10 samples during their daily work in Tianjin, China. Meanwhile, PM100 samples were collected at the roadsides and on campus of Nankai University as comparison. PAHs species were quantitatively analyzed by GC/MS. Experimental results showed that the concentrations of total PAHs, BaP and BaP(eq) were much higher at the road intersections (867.5, 26.2, 82.4 ng m(-3)), where the traffic policemen stand during their work time, than those at the roadsides (46.6, 1.5, 5.7 ng m(-3)), and on campus (19.5, 0.7, 2.4 ng m(-3)). According to the risk assessment results, the occupational risk falls within the range from 10(-6) to 10(-3). On the basis of sensitivity analysis results, further research should be directed to give better characterization of the yearly concentration distribution of PAHs and the cancer slope factor (CSF) of BaP in order to improve the accuracy of the health risk assessment.  相似文献   

4.
This study concerns the use of personal samplers to evaluate the exposure of traffic police to polycyclic aromatic hydrocarbons (PAHs) during the winter of 2005 in Beijing. We measured the samples collected for gas and particulate phases PAHs with the same technique used for an earlier study during the summer of 2004, and evaluated exposure risk based on the calculated benzo(a)pyrene equivalent concentrations (BaP(eq)) of both summer and winter. The mean exposure concentrations of gaseous and particulate phase PAHs in the winter are 4300+/-2900 ng/m(3) and 750+/-1000 ng/m(3), respectively, significantly higher than those measured simultaneously at control sites and also considerably higher than the values measured during the summer. The exposure PAH profiles for police and the control subjects are similar with predominant naphthalene in gaseous phase and dominant fluoranthene, pyrene, anthracene and naphthalene in particulate phase. Large daily variations occur both in summer and winter, because of the changes in the weather conditions especially wind speed and relative humidity which tend to disperse and scavenge PAHs in air. In the winter, the average BaP(eq) value for traffic police is 82.1 ng/m(3), which is significantly higher than those for the control subjects and the national standard of 10 ng/m(3) for ambient air. Particulate phase PAHs contribute more than 90% of the total exposure risk in the winter. Annually, weighted-average probabilities of exceeding the national standard (10 ng/m(3)) are 69.3% and 20.6% for the police and the controls, respectively.  相似文献   

5.
Urinary 1-hydroxypyrene (1-OHP), a biomarker of polycyclic aromatic hydrocarbons (PAHs) exposure, may be influenced by metabolic gene polymorphisms. Such knowledge could benefit us in understanding the inter-individual difference in the mechanism of PAHs-induced carcinogenesis. We investigated the influence of gene polymorphisms on urinary 1-OHP concentrations in 447 coke oven workers from two coking plants in south China. After adjustment for age, plant, level of occupational exposure, body mass index, level of education, alcohol consumption, cigarette smoking and respirator usage, AhR R554K (rs2066853), UGT1A1 -3263T>G (rs4124874) and GSTP1 I105V (rs1695) were associated with urinary 1-OHP excretion with the p-value of 0.053, 0.006 and 0.021, respectively. The concentrations of urinary 1-OHP (Geometric mean, micromol/mol creatinine) in the homozygous major variant carriers and homozygous minor variant carriers for AhR R554K, UGT1A1 -3263T>G and GSTP1 I105V were listed as follows: 4.20 and 5.12, 5.11 and 3.92, 4.93 and 2.91, respectively. GSTT1 present carriers had a significantly higher urinary 1-OHP level than that in null carriers in the case with AhR R554K GA/AA carriers (5.17 vs. 3.64 micromol/mol creatinine, p=0.038), as well as in the case with UGT1A1 -3263T>G TG/GG carriers (5.67 vs. 3.38 micromol/mol creatinine, p=0.001). These results showed that AhR, UGT1A1, GSTP1 and GSTT1 polymorphisms were associated with urinary 1-OHP concentrations in Chinese coke oven workers. No influence was found in the association between urinary 1-OHP and other genetic polymorphisms such as CYP1A1, CYP1A2, CYP1B1, CYP2E1, EPHX1, EPHX2 in this population.  相似文献   

6.
Airborne fine (PM(2.5)) and coarse (PM(2.5-10)) particulate matter was collected from January to December in 2007 in Zonguldak, Turkey using dichotomous Partisol 2025 sampler. Fourteen selected polycyclic aromatic hydrocarbons (PAHs) in particulate matter were determined simultaneously by high-performance liquid chromatography with fluorescence detection (HPLC-FL) and seasonal distributions were examined. The source identification of PAHs in airborne particulates was performed by principal component analysis (PCA) in combination with diagnostic ratios. The predominant PAHs determined in PM(2.5) were pyrene, fluoranthene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene. The total concentrations of PAHs were up to 464.0 ng m(-3) in fine and 28.0 ng m(-3) in coarse fraction in winter, whereas in summer times were up to 22.9 and 3.0 ng m(-3) respectively. Approximately 93.3% of total PAHs concentration was determined in PM(2.5) in winter and 84.0% in summer. The concentration levels of PAHs fluctuate significantly within a year with higher means and peak concentrations in the winter compared to that of summer times. Higher benzo(a)pyrene-equivalent (BaPE) concentrations of PAHs were obtained for PM(2.5) especially in winter. The results obtained from PCA in combination with diagnostic ratios revealed that coal combustion and vehicle emissions were the major pollutant sources for both PM(2.5) and PM(2.5-10) associated PAHs in studied area. Two principal components for PM(2.5) and three for PM(2.5-10) were identified and these accounted for 89.4 and 85.2% of the total variance respectively. The emissions from coal combustion were estimated to be the main source of PAHs in the ambient air particulates with contributions of 80.8% of total variance for PM(2.5) and 53.8% for PM(2.5-10).  相似文献   

7.
Sugarcane workers in Brazil are exposed to various genotoxic compounds, including polycyclic aromatic hydrocarbons (PAHs), derived from an incomplete combustion process of burnt sugarcane fields. The effects of the occupational exposure to sugarcane fields burning were measured in urine samples of sugarcane workers from the northwest of the State of S?o Paulo when exposed (harvesting) and when non-exposed (non-harvesting). The urinary levels of 1-hydroxypyrene (1-OHP) and the influence of the genetic polymorphisms CYP1A1, GSTM1, GSTT1 and GSTP1 were evaluated. Our results showed that the 1-OHP levels were significantly higher (P<0.0000) in the exposed sugarcane workers (0.318 mumol mol(-1) creatinine) than in the non-exposed workers (0.035 mumol mol(-1) creatinine). In an unvaried analysis, no influence regarding the polymorphisms was observed. However, multivariate regression analysis showed that the CYP1A1()4 polymorphism in the exposed group, and age and the GSTP1 polymorphism in the non-exposed group significantly influenced urinary 1-OHP excretion levels (P<0.10). The same group of sugarcane workers was significantly more exposed to PAHs during the harvesting period than during the non-harvesting period.  相似文献   

8.
This study was established to assess workers' health-risks posed by PAHs exposures via both routes of inhalation and dermal contact. Personal inhalation exposure sampling was conducted on eight wet pelletizing workers and 22 packaging workers, by using a sampling train comprising an IOM personal inhalable aerosol sampler followed by an XAD-2 sorbent tube. Two workers were randomly selected from both exposure groups, and dermal exposures assessed by using soft polypropylene pads attached to the skin for nine different body surface areas for each selected worker. All personal inhalation and dermal samples were analyzed for 21 polycyclic aromatic hydrocarbon (PAH) species, and then converted to benzo[a]pyrene equivalent (BaPeq) concentrations by using the list of toxic equivalent factors (TEFs) suggested by Nisbet and LaGoy [Regul Toxicol Pharmocol 16 (1992) 290]. The resultant inhalation and dermal BaPeq exposure levels were used to estimate lifetime risks for lung cancer and skin cancer by using the BaP unit risks of 7.0 x 10(-2) (microg/m3)(-1) and 37.47(mg/kg bodyweight/day)(-1), respectively. Results show the personal inhalation BaPeq exposure levels for pelletizing and packaging workers were 622 and 774 ng/m3, respectively. The corresponding lifetime lung cancer risks estimated for both exposure groups were 4.35 x 10(-2) and 5.42 x 10(-2) respectively. For dermal exposures, results show personal dermal BaPeq exposure levels for both exposure groups were 0.664 and 0.847 microg/kg per day, respectively. The corresponding estimated lifetime skin cancer risks were 1.13 x 10(-3) and 1.56 x 10(-3), respectively. Although the estimated skin cancer risks were lower than the corresponding lung cancer risks for both exposure groups, however, both were higher than the designated significant risk level (= 10(-3)) which was defined by the US Supreme Court in 1980. Considering the bioavailability of particle-bound PAHs still remains unknown, the health risks obtained from this study could be overestimated and thus require further investigation.  相似文献   

9.
Ambient particulate matter (PM(10)) in urban centres varies depending on emission sources, geography, demography, and meteorology. Hence physical (PM(10), wind speed, rainfall, temperature), chemical (polycyclic aromatic hydrocarbons, PAH), and toxicological (Ames Test, H4IIE EROD Assay) analyses were done on daily PM(10) (approximately 1640 m(3)/day) collected from three New Zealand urban sites where winter emissions were predominantly due to domestic home heating. Daily PM(10) levels ranged between 9.7 and 20.8 in summer and between 21.8 and 61.0 microg/m(3) in winter. Daily PAH concentrations were 0.5, 0.45, and 1.5 ng/m(3) in summer and 52.1, 128.9, and 5.8 ng/m(3) in winter at sites Christchurch, Alexandra and Dunedin, respectively. During winter, 74% of PM(10) extracts from all three sites showed significant mutagenicity in the Ames Test (TA 98, -S9), whereas approximately 25% of the daily PM(10) was mutagenic in summer. Benzo[a]pyrene and BaP carcinogenic equivalence concentrations during winter were strongly correlated to both mutagenicity and TCDD-like activity at two sites. Daily levels of TCDD toxicity equivalence concentrations ranged from 0.5 to 3.6 pg TCDD/m(3) air in summer and from 0.3 to 4009 pg TCDD/m(3) air in winter. Chemically and biologically derived TCDD toxicity equivalent concentrations were significantly correlated in all study locations indicating that PAH may represent most of the TCDD-like activity present in the PM(10).  相似文献   

10.
Polycyclic aromatic hydrocarbons in dustfall in Tianjin, China   总被引:7,自引:0,他引:7  
Atmospheric dustfall samples from 23 locations in Tianjin, China, were collected and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs) classified by the Environmental Protection Agency as priority pollutants from March 2002 to March 2003. SigmaPAH16 (sum of 16 PAH compounds) concentrations in the dustfall collected during heating season ranged from 2.5 to 85.5 mug/g, while that during the non-heating season varied from 1.0 to 48.2 microg/g dry weight. The dominant components in the heating season included naphthalene, phenanthrene, fluoranthene, and chrysene, while naphthalene, fluorene, phenanthrene, and fluoranthene were dominant during the non-heating season. Compared with the non-heating season, the heating season was characterized by a higher fraction of high-molecular-weight PAHs with four to six rings with exception of the samples from the east industrial area. The east industrial area had more significant correlations between individual PAH compounds, and more discrete triangular components of three-, four-, five- and six-ring PAHs. No significant correlations were observed between the PAHs concentrations and total organic carbon (TOC) in the dustfall samples. The deposition fluxes of sigmaPAH15 (sum of 15 PAHs except naphthalene), sigmaPAH6 (sum of 6 carcinogenic PAHs recommended by IARC) and benzo[a]pyrene (BaP) from atmospheric deposition to the whole area were estimated as 1911, 196, and 53 microg/m2/year, respectively. The deposition rates for PAH compounds in the east industrial area were higher than those in the urban and rural areas. Furthermore, the deposition contribution of PAHs during domestic heating season in winter was not significant relative to the annual inputs.  相似文献   

11.
VOCs and PAHs emissions from creosote-treated wood in a field storage area   总被引:1,自引:0,他引:1  
In this study, the emissions of volatile organic compounds (VOCs, in this case aromatic hydrocarbons containing one benzene ring and furans) and polycyclic aromatic hydrocarbons (PAHs) from wood recently treated with creosote are examined. The VOCs and PAHs were identified and quantified in the gas phase. Additionally, the PAHs were quantified in the particulate phase. Glass multi-sorbent tubes (Carbotrap, Carbopack X, Carboxen-569) were used to hold the VOCs. The analysis was performed using automatic thermal desorption (ATD) coupled with capillary gas chromatography/mass spectrometry (GC/MS). PAHs vapours were collected on XAD-2 resin, and particulate matter was collected on glass fibre filters. The PAHs were analysed using GC/MS. The main components of the vapours released from the creosote-treated wood were naphthalene, toluene, m+p-xylene, ethylbenzene, o-xylene, isopropylbenzene, benzene and 2-methylnaphthalene. VOCs emission concentrations ranged from 35 mg m(-3) of air on the day of treatment to 5 mg m(-3) eight days later. PAHs emission concentrations ranged from 28 microg m(-3) of air on the day of treatment to 4 microg m(-3) eight days later. The air concentrations of PAHs in particulate matter were composed predominantly of benzo[b+j]fluoranthene, benzo[a]anthracene, chrysene, fluoranthene, benzo[e]pyrene and 1-methylnaphthalene. The emission concentrations of particulate polycyclic aromatic hydrocarbons varied between 0.2 and 43.5 ng m(-3). Finally, the emission factors of VOCs and PAHs were determined.  相似文献   

12.
The green alga, Scenedesmus subspicatus was exposed for 7 days to a series of PAHs (polyaromatic hydrocarbons) of increased molecular weight from two to five rings [naphthalene (Nap), anthracene (Ant), phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP)]. The toxicity measured as population growth inhibition by individual PAH to the S. subspicatus followed the order: BaP>Pyr>Ant>Phe>Nap. These results confirmed that the toxicity potential of PAHs seems to be strongly influenced by their physico-chemical properties (aqueous solubility, K(ow), coefficient of volatilization, etc.) and the conditions of algae culture (light, presence of nitrate ions, etc.). Consequently, Nap, Phe and Ant having low k(ow) values and low coefficient of volatilization values were less toxic than BaP with the highest k(ow) value, indicating for example why Nap with the lowest EC(50) value was nearly 2 x 10(5) times lower than that of BaP. Moreover, nitrate ions seemed to act directly on the degree of hydroxylated radical reactivity of PAHs, since BaP always remained the most toxic of the compounds tested. The results were also agreed with the QSAR model for toxicity prediction of PAHs to many aquatic organisms.  相似文献   

13.
In the context of environmental monitoring in Berlin polycyclic aromatic hydrocarbon (PAH) concentrations in air and household dust were measured inside 123 residences (and simultaneously in a sub group in the air outside the windows). The aim of this study was to determine exposure to PAHs in the environment influencing by several factors, for instance, motor vehicle traffic in a populous urban area. Indoor air samplings were carried out in two periods (winter and spring/summer) in smokers and non-smokers apartments. Benzo(a)pyrene (BaP) median values were 0.65 ng m(-3) (winter) and 0.27 ng m(-3) (spring/summer) in smokers' apartments and 0.25 ng m(-3) (winter) and 0.09 ng m(-3) (spring/summer) in the apartments of non-smokers. The median BaP content in ambient air was 0.10 ng m(-3) (maximum: 1.1 ng/m(-3)) with an indoor-outdoor mean concentration ratio of 0.9 in non-smoker households and 5.4 in smoker apartments. In household dust we obtained median values of 0.3 mg kg(-1) (range: 0.1-1.4 mg kg(-1)). We found a significant relation between indoor and outdoor values. Approximately 75% of the variance of indoor air values was caused by the corresponding BaP concentrations in the air outside the apartment windows. Otherwise a significant correlation between indoor air and household dust values cannot be found. Therefore, according to our results, it is suggested that the indoor PAH concentration in non-smoker apartments could be attributed mainly to vehicular emissions.  相似文献   

14.
We present the mechanistic-based exposure and risk models, appraised with reported empirical data, to assess how the human exposure to airborne particulate matters (PMs) and carcinogenic polycyclic aromatic hydrocarbons (PAHs) during heavy incense burning episodes in temples. The models integrate size-dependent PM levels inside a temple from a published exploratory study associated with a human expiratory tract (HRT) model taking into account the personal exposure levels and size distributions in the HRT. The probabilistic exposure profiles of total-PAH levels inside a temple and internal PAHs doses are characterized by a physiologically based pharmacokinetic (PBPK) model with the reconstructed dose-response relationships based on an empirical three-parameter Hill equation model, describing PAHs toxicity for DNA adducts formation and lung tumor incidence responses in human white blood cells and lung. Results show that the alveolar-interstitial (AI) region has a lower mass median diameter (0.29 microm) than that in extrathoracic (ET(1), 0.37 microm), brochial (BB, 0.36 microm) and bronchiolar (bb, 0.32 microm) regions. The 50% probability (risk=0.5) of exceeding the DNA adducts frequency (DA(f)) ratio of 1.28 (95% CI: 0.55-2.40) and 1.78 (95% CI: 0.84-2.95) for external exposure of B[a]P and B[a]P(eq), respectively. The 10% (risk=0.1) probability or more of human affected by lung tumor is approximately 7.62x10(-5)% (95% CI: 3.39x10(-5)-1.71x10(-4)%) and 3.87x10(-4)% (95% CI: 1.72x10(-4)-8.69x10(-4)%) for internal exposure of B[a]P and B[a]P(eq), respectively. Our results implicate that exposure to smoke emitted from heavy incense burning may promote lung cancer risk. Our study provides a quantitative basis for objective risk prediction of heavy incense burning exposure in temples and for evaluating the effectiveness of management.  相似文献   

15.
The carbon composition of fine particles (PM(2.5)) from traffic exhausts may play a role in adverse health effects. The objective of this study was to assess the concentrations of elemental and organic carbon in PM(2.5) in traffic exhausts from different types of vehicles in the booths of Taiwanese toll station workers and estimate the relations between traffic density and carbon concentrations. Tollbooth indoor monitoring samples were collected for 10 days to assess the 8 h integrated PM(2.5) concentration. Particle samples were analyzed for the content of total carbon, and elemental, and organic carbon. The mean carbon concentrations in the bus and truck lanes were [total: 167.7 microg/m(3) (SD 79.8 microg/m(3)); elemental: 131.7 (66.2); organic: 36.0 (25.8)], substantially higher compared with the car lanes with cash payment [39.2 (29.5); 20.2 (19.5); 19.2 (14.6)] and the car lanes with ticket payment [34.1 (26.1); 15.8 (17.6); 18.5 (12.2)]. The increase in elemental carbon concentration per vehicle in the bus and truck lane was 14 and 9 times greater than that of car lanes of ticket payment and car lanes of cash payment. The mass fraction of carbonaceous species in PM(2.5) accounted for 54% in bus and truck lanes, whereas the corresponding figure was 30-31% for car lanes. Elemental carbon is an important component of diesel exhaust. Workers in toll stations are exposed to high levels of both elemental and organic carbon.  相似文献   

16.
It was postulated that a population in sub-Saharan Africa, known to be at high risk for aflatoxicosis due to frequent ingestion of aflatoxin (AF)-contaminated foods could also be exposed to polycyclic aromatic hydrocarbons (PAHs) from a variety of environmental sources. Previously, participants in this population were shown to be highly exposed to AFs, and this exposure was significantly reduced by intervention with NovaSil clay (NS). Objectives of this study were 1) to assess PAH exposure in participants from the AF study using urinary biomarker 1-hydroxypyrene (1-OHP); 2) examine the effect of NS clay and placebo (cellulose) treatment on 1-OHP levels; and 3) determine potential association(s) between AF and PAH exposures. A clinical trial was conducted in 177 Ghanaians who received either NS capsules as high dose or low dose, or placebo (cellulose) for a period of 3 months. At the start and end of the study, urine samples were analyzed for 1-OHP. Of the 279 total samples, 98.9% had detectable levels of 1-OHP. Median 1-OHP excretion in nonsmokers was 0.64 µmol/mol creatinine at baseline and 0.69 µmol/mol creatinine after 3 months. Samples collected at both time points did not show significant differences between placebo and NS-treated groups. There was no linear correlation between 1-OHP and AF-albumin adduct levels. Results show that this population is highly exposed to PAHs (and AFs), that NS and cellulose treatment had no statistically significant effect on 1-OHP levels, and that this urinary biomarker was not linearly related with AF exposure.  相似文献   

17.
In this paper, we review studies on the carcinogenic effects of two polycyclic aromatic hydrocarbons (PAHs), benzo(a)pyrene (BaP) and 7,12-dimethylbenz(a)anthracene (DMBA), on the Japanese medaka (Oryzias latipes) and the guppy (Poecilia reticulata). Exposure media were prepared by adding PAHs to water, with and without dimethylformamide (DMF) as a carrier, and passing this solution through various sized filters. The low exposure medium was a 0.45 micron filtrate without DMF that contained less than 5 micrograms L-1 PAH. The intermediate medium was a DMF-mediated 0.45 micron filtrate which contained 30-50 micrograms L-1 of PAH. The high medium was a DMF-mediated glass-fibre filtrate which contained 150-250 micrograms L-1 of PAH. Young fish specimens (6-10 d old) were given a 6 h exposure once weekly for 2 to 4 wk. Both BaP and DMBA induced hepatic neoplasms in the two species, with the medaka being more sensitive than the guppy, and DMBA being a stronger carcinogen than BaP. Liver neoplasms almost exclusively developed after exposure to BaP and the neoplasms were limited to the high concentration exposure, whereas DMBA caused a substantial number of extrahepatic neoplasms as well as hepatic ones, especially in the medaka. Furthermore, all three concentrations of DMBA induced hepatic neoplasms in the medaka and all but the low concentration induced neoplasms in the guppy. These studies demonstrate the carcinogenic effects of two waterborne PAHs on two small fish species following brief exposures to very low concentrations, and support the contention that environmental PAHs can contribute to the occurrence of cancer in wild fishes.  相似文献   

18.
In Baguio City, Philippines, a mountainous city of 252,386 people where 61% of motor vehicles use diesel fuel, ambient particulate matter <2.5 microm (PM(2.5)) and <10 microm (PM(10)) in aerodynamic diameter and carbon monoxide (CO) were measured at 30 street-level locations for 15 min apiece during the early morning (4:50-6:30 am), morning rush hour (6:30-9:10 am) and afternoon rush hour (3:40-5:40 pm) in December 2004. Environmental observations (e.g. traffic-related variables, building/roadway designs, wind speed and direction, etc.) at each location were noted during each monitoring event. Multiple regression models were formulated to determine which pollution sources and environmental factors significantly affect ground-level PM(2.5), PM(10) and CO concentrations. The models showed statistically significant relationships between traffic and early morning particulate air pollution [(PM(2.5)p=0.021) and PM(10) (p=0.048)], traffic and morning rush hour CO (p=0.048), traffic and afternoon rush hour CO (p=0.034) and wind and early morning CO (p=0.044). The mean early morning, street-level PM(2.5) (110+/-8 microg/m3; mean+/-1 standard error) was not significantly different (p-value>0.05) from either rush hour PM(2.5) concentration (morning=98+/-7 microg/m3; afternoon=107+/-5 microg/m3) due to nocturnal inversions in spite of a 100% increase in automotive density during rush hours. Early morning street-level CO (3.0+/-1.7 ppm) differed from morning rush hour (4.1+/-2.3 ppm) (p=0.039) and afternoon rush hour (4.5+/-2.2 ppm) (p=0.007). Additionally, PM(2.5), PM(10), CO, nitrogen dioxide (NO2) and select volatile organic compounds were continuously measured at a downtown, third-story monitoring station along a busy roadway for 11 days. Twenty-four-hour average ambient concentrations were: PM(2.5)=72.9+/-21 microg/m3; CO=2.61+/-0.6 ppm; NO2=27.7+/-1.6 ppb; benzene=8.4+/-1.4 microg/m3; ethylbenzene=4.6+/-2.0 microg/m3; p-xylene=4.4+/-1.9 microg/m3; m-xylene=10.2+/-4.4 microg/m3; o-xylene=7.5+/-3.2 microg/m3. The multiple regression models suggest that traffic and wind in Baguio City, Philippines significantly affect street-level pollution concentrations. Ambient PM(2.5) levels measured are above USEPA daily (65 microg/m3) and Filipino/USEPA annual standards (15 microg/m3) with concentrations of a magnitude rarely seen in most countries except in areas where local topography plays a significant role in air pollution entrapment. The elevated pollution concentrations present and the diesel-rich nature of motor vehicle emissions are important pertaining to human exposure and health information and as such warrant public health concern.  相似文献   

19.
Lung SC  Kao MC  Hu SC 《Indoor air》2003,13(2):194-199
Burning incense to worship Gods and ancestors is a traditional practice prevalent in Asian societies. This work investigated indoor PM10 concentrations resulting from incense burning in household environments under two conditions: closed and ventilated. The exposure concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) were estimated. The factors of potential exposure were also evaluated. Under both conditions, samples were taken at three locations: 0.3, 3.5 and 7 m away from the altar during three periods: incense burning, the first 3 h, and the 4-6 h after cessation of combustion. PAH concentrations of incense smoke were assessed in the laboratory. Personal environment monitors were used as sampling instruments. The results showed a significant contribution of incense burning to indoor PM10 and particulate PAH concentrations. PM10 concentrations near the altar during incense burning were 723 and 178 microg/m3, more than nine and 1.6 times background levels, under closed and ventilated conditions, respectively. Exposure concentrations of particle-bound PAHs were 0.088-0.45 microg/m3 during incense burning. On average, PM10 and associated PAH concentrations were about 371 and 0.23 microg/m3 lower, respectively, in ventilated environments compared with closed conditions. Concentrations were elevated for at least 6 h under closed conditions.  相似文献   

20.
Doong RA  Lin YT 《Water research》2004,38(7):1733-1744
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected from 12 locations in Gao-ping River, Taiwan were analyzed. Molecular ratios and principal component analysis (PCA) were used to characterize the possible pollution sources. Concentrations of total 16 PAHs (SigmaPAHs) in water samples ranged from below method detection limits (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号