首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 689 毫秒
1.
于晓慧  王甜  高志 《太阳能学报》2023,(11):166-173
该文将真空管集热器与直膨式太阳能热泵结合,提出一种真空管直膨式太阳能热泵系统。实验研究典型工况下太阳辐照度、循环水温度对系统性能的影响,并探讨压缩机变频条件下系统的动态性能。结果表明,提高太阳辐照度、降低循环水温度有利于提高系统性能,在太阳辐照度为850 W/m2,循环水温度为55℃时系统取得最大COP,为5.36。压缩机频率为42 Hz的系统COP为4.08,较45、47、50 Hz分别提高1.23%、8.5%、13.6%。  相似文献   

2.
利用实验的方法,研究了太阳辐照度、外界气温和风速、初始水温、蒸发器出口温度和压力等对太阳能辅助二氧化碳热泵热水系统运行状况和COP的影响。实验结果表明,系统COP随初始水温的升高而增大;太阳辐照度、外界温度和风速对热泵系统性能的影响主要体现在对系统循环水温的影响;在一定范围内,蒸发压力和蒸发温度越高,热泵系统的COP越大。  相似文献   

3.
为实现空气源热泵辅助太阳能热水系统中关键参数的优化匹配,基于TRNSYS动态模拟平台建立完整的空气源热泵辅助太阳能热水系统模型。以系统生命周期成本为目标函数,以集热器面积、集热器倾角、水箱容积及热泵功率为优化变量,借助GENOPT软件调用Hooke-Jeeves算法对系统各变量进行同步优化,并对各优化变量进行敏感性分析。以西昌市某学生宿舍的空气源热泵辅助太阳能热水系统为研究对象进行优化。研究结果表明,优化后的COPsys普遍提高,系统性能得到明显改善,系统全年运行费用缩减,全年节电率高达9.11%。并在此基础上提出关键参数的推荐匹配原则:单位集热面积水箱容积为70 L/m~2,单位集热面积热泵功率为60 W/m~2,最佳集热器倾角为φ-6°(φ为当地纬度)。对空气源热泵辅助太阳能热水系统进行设计时,可依据以上匹配原则对热泵功率、集热器面积、水箱容积、集热器倾角按照先后顺序进行优化。研究结果可为空气源热泵辅助太阳能热水系统的优化设计提供理论依据。  相似文献   

4.
大型太阳能空调/热泵系统   总被引:10,自引:0,他引:10  
详细介绍了位于北京天普集团工业园区的太阳能空调,热泵系统。该系统主要由太阳能集热器阵列、溴化锂制冷机、热泵、控制系统等几部分组成。系统以太阳能为主,热泵为辅,可以完全满足新能源示范大楼全年的空调、采暖及生活热水的需要。介绍了系统的技术参数及部分运行数据,分析了系统的特点及运行状况。  相似文献   

5.
通过TRNSYS软件搭建了复合抛物面聚光器(CPC)集热器太阳能热水系统模型,对广州地区某小型别墅的太阳能热水系统进行了设计,并观察系统在1年(8760 h)中的运行情况。选取了系统在4个典型日的运行情况进行分析,得到了CPC集热器在春分日和冬至日的最高出口温度分别为67.5℃和68.2℃,在夏至日和秋分日的最高出口温度分别为85.7℃和83.3℃。CPC集热器的集热效率随进口流量的增大而增大,随进口温度的下降而升高;经测试,CPC集热器的最佳安装倾角为22°。对CPC集热器和平板集热器的集热性能进行比较后发现,二者的集热功率基本均随太阳辐照度的增加而增加,在冬至日12:00~15:00这个时段,CPC集热器的集热功率是平板集热器的1.5倍。  相似文献   

6.
为降低压缩机排气温度、优化热泵系统性能,设计了 一种利用太阳能集热器加热压缩机排气,利用蒸气显热制取高温热水的新型太阳能辅助热泵系统.结合天津地区的辐射日照条件对新型太阳能辅助热泵系统进行了可行性和热力性能分析,并将其与直膨式太阳能辅助热泵系统的性能进行对比.结果表明:该系统通过提高蒸发温度,可以降低制冷压缩机排气温度...  相似文献   

7.
直膨式太阳能热泵系统的模型仿真   总被引:2,自引:0,他引:2  
考虑了集热器中制冷剂压降的存在,利用平衡均相理论建立了太阳能集热/蒸发器的两相流模型,同时建立了压缩机、冷凝器的数学模型.从理论上分析了集热器中制冷剂的压降、集热器的类型、集热面积、太阳能辐照度、环境温度、压缩机容积以及冷凝温度等因素对直膨式太阳能热泵系统热工性能的影响,并在此基础上给出了改善系统性能的建议.  相似文献   

8.
构建了一种太阳能-空气源热泵复合供热系统,在广东地区冬季的晴天和全阴天进行供暖供生活热水实验测试。针对办公建筑供暖供生活热水需求,定时间段供生活热水同时进行供暖实验。实验结果表明:晴天热泵相较于全阴天工况节电1.16 kW·h,供热效果优于全阴天工况,太阳能-空气源热泵复合供热性能相较于单独的空气源热泵更有显著优势;太阳能-空气源热泵复合系统供暖供生活热水期间,复合系统COP_(sys)平均值为4.71、波动范围在4.20~5.38,空气源热泵系统COP_(hp)平均值为4.60、波动范围在4.08~5.10。  相似文献   

9.
通过系统在不同运行模式下的实验研究,分析太阳辐照度、温度等参数对系统光伏光热性能的影响,结果表明光伏热泵组件发电效率比传统光伏组件提高16.4%;在获得同样热水情况下,混联运行比串联运行每天多输出1.7 k Wh的净发电量,热泵平均COP从1.9升高到3.4。间接式光伏热泵系统将集热器的热量在蒸发器与冷凝器间进行合理分配后,比直膨式光伏热泵系统具有更好的综合性能。  相似文献   

10.
文章基于平板型集热器日均能量输出模型,建立了太阳能热水系统水箱水量与集热器面积的配比模型。以云南7城市的典型气象数据为例,利用所建模型对太阳能热水系统的水量配比进行了计算,给出了水箱终温为60℃时各城市各季节或全年使用太阳能热水系统的水量配比的取值范围。为便于工程应用,文中给出了水量配比与倾角间相关系数大于0.999的二次关系式。进一步讨论发现,云南7城市春季、夏季、秋季、冬季或全年使用的太阳能热水系统集热器的最佳倾角分别为10~15°,0~0°,32~38°,45~50°,24~30°;其对应的水量配比分别为50~60 kg/m2,44~51 kg/m2,43~56 kg/m2,44~58 kg/m2,46~52 kg/m2。针对不同的供热目的 ,可利用文中的关系式和各季节或全年的最佳倾角对太阳能热水系统进行优化设计。  相似文献   

11.
The performance of photovoltaic/thermal (PV/T) solar collector had been studied theoretically and experimentally for some years. Air and water streams were used as the heat carriers for space heating or services hot water systems. The cooling effect allows the PV module to work at lower temperature and its PV efficiency is therefore improved. However, such an advantage diminishes when the solar irradiance is high. To improve the situation a new type of PV/T collector is proposed. It works as the evaporator of a heat pump, in that refrigerant evaporates in the tubing at the back of the flat-plate collector and the PV module is adhered to the front surface. Mathematical models were developed to simulate the complex energy conversion processes. Numerical analysis was then performed based on the distributed parameters approach. An experimental rig was also built to test its real performance. Our results showed that the PV/T evaporator had an overall efficiency in the range of 0.64–0.87, thermal efficiency 0.53–0.64 and PV efficiency 0.124–0.135. The simulation results were found in good agreement with the experiment measurements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Solar heat pump systems for domestic hot water   总被引:3,自引:0,他引:3  
Vapour compression heat pumps can upgrade ambient heat sources to match the desired heating load temperature. They can offer considerable increase in operational energy efficiency compared to current water heating systems. Solar heat pumps collect energy not only from solar radiation but also from the ambient air. They can operate even at night or in totally overcast conditions. Since the evaporator/collector operates at temperatures lower than ambient air temperature it does not need glazing or a selective coating to prevent losses. Currently, however, they are not used much at all in domestic or commercial water heating systems. In this paper comparison is made of a conventional solar hot water system, a conventional air source heat pump hot water system and a solar heat pump water heating system based on various capital city locations in Australia. A summary is given of specific electricity consumption, initial and operating costs, and greenhouse gas generation of the three systems dealt with in this paper. The ultimate choice of unit for a particular location will depend heavily on the solar radiation, climate and the local price paid for electricity to drive or boost the unit chosen.  相似文献   

13.
Thermal performance of a direct expansion solar-assisted heat pump   总被引:2,自引:0,他引:2  
A direct expansion solar assisted heat pump, in which a bare flat plate collector also acts as the evaporator for the refrigerant, Freon-12, is designed and operated. The system components, e.g. the collector and the compressor, are properly matched so as to result in system operating conditions wherein the collector/evaporator temperature ranges from 0 to 10°C above ambient temperature under favorable solar conditions. This operating temperature range is particularly favorable to improved heat pump and solar collector performance. The system thermal performance is determined by measuring refrigerant flow rate, temperature and pressure at various points in the system. The heat pump COPH and the solar collector efficiency ranged from 2.0 to 3.0 and from 40 to 70 per cent, respectively, for widely ranging ambient and operating conditions. Experimental results indicate that the proposed system offers significant advantage in terms of superior thermal performance when compared with results gotten by replacing the solar evaporator with a standard outdoor fan-coil unit.  相似文献   

14.
This paper describes the performance of a 1.5 ton solar-operated absorption refrigeration unit operating with a 14 m2 flat-plate solar collector system and containing five heat exchangers: the generator, the absorber, the condenser, the solution heat exchanger (all of these being of shell-and-tube type) and finally the evaporator, which is of the fin-and-tube type. One circulation pump is used for solution flow and another for the hot water flow. The condenser and the absorber are both cooled by city mains water. This particular unit, called the second generation unit, is compared with an earlier, first-generation unit (FGU), i.e. a low-cost, locally manufactured unit of 0.5 ton capacity. The results are based on the observed operation of the unit during hours of sufficient solar irradiance in April and May, the beginning of the air-conditioning season in Jordan. The variation of both the generator and evaporator temperatures during the test period are reported. Also reported is the performance of the unit as measured by the actual and theoretical (ideal) coefficients of performance, both of these being functions of the temperatures and solar irradiance. The maximum values obtained for both actual and theoretical coefficients of performance were 0.85 and 2.7, respectively. These values are within the range of values published in literature, and higher than those obtained by the FGU.  相似文献   

15.
一种新型太阳能海水淡化系统的实验研究   总被引:1,自引:1,他引:0  
介绍了一种新型的太阳能海水淡化方法,即结合太阳能空气集热器和太阳能热管、利用空气增湿除湿来实现海水淡化。分别进行了电吹风模拟太阳能空气集热器的蒸发器实验,以及结合3m2太阳能空气集热器和热管集热器的实际装置实验。结果表明,影响蒸发量的主要因素为热空气温度、热空气流量、初始水量、水温、出气孔直径和数量。实验结果表明,装置可获得的最大冷凝量为790g/h,计算出系统的产水率和热力学效率分别为5.59×10-5kg/kJ和12.4%。  相似文献   

16.
太阳能-空气复合热源热泵热水器的性能模拟与分析   总被引:2,自引:0,他引:2  
徐国英  张小松 《太阳能学报》2006,27(11):1148-1154
介绍了一种新型太阳能—空气复合热源热泵热水装置(SAS-HPWH)。该装置通过使用独特设计的螺旋翅片蒸发管的平板型集热/蒸发器,可以在不同的天气情况下切换运行太阳能热源热泵模式、太阳能与空气双热源热泵模式和空气源热泵模式,制取生活热水。论文主要针对自行设计的一台150L的SAS-HPWH,建立系统的数学模型,并以太阳能输入比例为准则研究系统的运行模式与特性。模拟结果显示该热水器在不同天气特征情况下可高效率地制造55℃热水。论文还分析了太阳辐射、环境温度以及压缩机的容量对系统特性的影响,提出使用变频压缩机,根据不同的天气情况调节制冷剂流量,进一步提高系统的整体性能。  相似文献   

17.
传统直膨式太阳能辅助热泵系统在低温环境适应性欠佳,影响其在寒冷地区使用,通过采用补气增焓技术可以有效提高其低温条件下的供热能力。以所提出的采用PVT集热/蒸发器的补气增焓热泵系统为研究对象,计算分析环境条件、太阳辐射强度、注入蒸汽质量流量对该热泵系统性能的影响。研究结果表明: 当环境温度为-10℃,太阳照强度为500 W/m2时,性能系数(COP)可达4.3,比使用补气增焓(VI)循环的空气源热泵(ASHP)系统高63.6%。以当量热价(LCOH)作为指标与其他3种供热系统进行比较,所提出的系统经济性也具有一定的优势,可为补气增焓热泵系统在寒冷气候地区的应用提供新思路。  相似文献   

18.
X.Q. Kong  D. Zhang  Y. Li  Q.M. Yang 《Energy》2011,36(12):6830-6838
A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.  相似文献   

19.
设计一种基于平板热管的太阳能-空气能双源集热蒸发器及由其组成的新型直膨式热泵系统,并对其进行实验研究与分析。实验测试平板热管在制冷剂低温取热条件下的均温性与导热性能,热泵运行工况下集热蒸发器表面温度分布、光电光热性能,以及在不同天气条件不同运行模式下热泵系统性能。结果表明,平板热管在低温取热条件下当量导热系数可达6.8×105W/(m·℃),集热蒸发器运行时纵向最大温差为3.9℃;在夏季晴朗天气条件下运行太阳能模式制热水时热泵平均COP为3.62;在低辐照阴天下运行太阳能-空气能双源模式与太阳能模式相比,单位面积集热功率提高18.8%,系统平均COP提高5.7%;在无辐照的夜晚,运行空气源模式系统COP为2.54。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号