首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在自行研制的试验台上对NOxOUT工艺进行了试验研究,结合化学反应动力学模拟研究了CO(NH2)2还原NO过程中的关键影响因素。试验中最佳的尿素溶液喷入温度为850~900℃,NO的还原率最高可达到83%。利用Chemkin 4.1均相反应模型,模拟NOxOUT工艺所得的最佳反应温度窗口及其在各温度下的NOx去除率与试验数据进行对比,结果基本吻合。NSR的增加和停留时间的加长都有利于NO的脱除;但随着NSR的增加,烟气中N2O的生成量也随之增加而影响脱硝效率。试验中检测到烟气尾气中的碱性随着NSR的增加而增大,随着温度的增大而降低,模拟结果与试验结果基本吻合。  相似文献   

2.
选择性非催化脱硝不同还原剂的比较试验研究   总被引:2,自引:2,他引:0  
SNCR(选择性非催化还原)过程试验是在CRF(Combustjon Research Facility)试验装置上进行的.使用尿素、氨水、(NH4)2CO3、NH4HCO3还原烟气中的NOx,通过雾化喷嘴在CRF炉膛内喷入还原剂.试验结果表明,对于所使用的还原剂随着NH3/NO摩尔比的增加,NO还原效率逐渐提高;对于尿素、氨水、(NH4)2CO3等还原剂,氨氮比为1~2.5,脱硝效率分别为65%~89%、62%~86%、45%~84%;对于NH4HCO3,氨氮摩尔比0.8~1.5,脱硝效率为46%~73%.不同还原剂的温度窗口不同,适宜尿素进行SNCR过程的反应温度最高,氨水最低.  相似文献   

3.
为分析再燃区温度、污泥含水率、过量空气系数和停留时间对污泥再燃脱硝特性的影响,对污泥再燃脱硝特性进行试验研究。采用配气法模拟流化床锅炉燃烧产生的烟气,使用污泥颗粒作为再燃燃料,通过立式管式炉进行再燃试验。结果表明:在再燃区温度为850~950℃时,随着再燃区温度升高,NO和N_2O的还原率均升高;水分对NO和N_2O的还原机理影响不同,含水率为10%~15%时,NO_x的还原率较高;在过量空气系数为0. 7~1. 0时,随过量空气系数升高,NO和N_2O的还原率减小;在停留时间为0. 45~0. 7 s时,随停留时间增大,NO和N_2O的还原率增大。  相似文献   

4.
H2O2同时脱硫脱硝的试验研究   总被引:1,自引:0,他引:1  
为实现火电厂烟气的脱硫脱硝一体化,采用H2O2为氧化剂进行了同时脱硫脱硝试验.在鼓泡反应器中,将原电厂烟气通过H2O2溶液、尿素溶液和电厂脱硫石灰石浆液进行了脱硫脱硝一体化试验.结果表明:脱硝效率随着H2O2质量分数的增加而升高;试验得出的最佳H2O2溶液温度与石灰石一石膏法脱硫循环浆液的温度范围相吻合;在配合尿素和石灰石浆液试验时,脱硝效率高达75%.  相似文献   

5.
结合燃煤电厂实际工况条件,基于尿素/NaClO2溶液进行了同时脱硫脱硝试验研究,探索尿素/NaClO2湿法同时脱硫脱硝的主要影响因素和优化工艺条件,并分析其反应机理.结果表明:纯尿素溶液可有效脱除烟气中的SO2,但对NO脱除效果较差,NaClO2的添加可有效改善NO的脱除效果;液气比和NaClO2质量分数增大有利于提高尿素/NaClO2溶液的脱硫脱硝效果,其中NaClO2质量分数对NO脱除效率的影响比对SO2脱除效率的影响明显;空塔气速和NO初始质量浓度与系统脱硫、脱硝效率成负相关关系.NaClO2的添加对尿素溶液脱硫效果影响较小,SO2被吸收后生成的SO2-3主要被烟气中溶于水的O2氧化成SO2-4;难溶于水的NO被NaClO2氧化为NO2和NO-2等,进而被尿素溶液有效吸收,NOx最终多数以N2形式排放.  相似文献   

6.
在自行设计的选择性非催化还原(SNCR)脱硝试验台上,通过在还原剂中添加CO,研究了CO对SNCR脱硝工艺的影响,并利用Chemkin 4.1软件对试验工况进行了模拟.结果表明:改进型TB系列喷嘴采用中心逆喷方式可大大增强还原气体与主烟气的混合效果,明显优于工业上常用的侧喷方式,且不存在还原剂的催化分解问题;添加CO可使SNCR工艺的反应温度窗口降低并变宽;在低于875℃的条件下,添加CO有助于提高NO2的脱除效率,随着CO添加量的增加,既定温度下NOx的脱除效率先提高后降低,且随着温度的降低,达到NO相似文献   

7.
结合燃煤电厂实际工况条件,基于尿素/NaClO2溶液进行了同时脱硫脱硝试验研究,探索尿素/NaClO2湿法同时脱硫脱硝的主要影响因素和优化工艺条件,并分析其反应机理.结果表明:纯尿素溶液可有效脱除烟气中的SO2,但对NO脱除效果较差,NaClO2的添加可有效改善NO的脱除效果;液气比和NaClO2质量分数增大有利于提高尿素/NaClO2溶液的脱硫脱硝效果,其中NaClO2质量分数对NO脱除效率的影响比对SO2脱除效率的影响明显;空塔气速和NO初始质量浓度与系统脱硫、脱硝效率成负相关关系.NaClO2的添加对尿素溶液脱硫效果影响较小,SO2被吸收后生成的SO32-主要被烟气中溶于水的O2氧化成SO42-;难溶于水的NO被NaClO2氧化为NO2和NO2-等,进而被尿素溶液有效吸收,NOx最终多数以N2形式排放.  相似文献   

8.
对1台以尿素为还原剂、配备Compact型旋风分离器的循环流化床锅炉的选择性非催化还原脱硝性能进行了数值模拟,重点研究了温度、氨氮摩尔比、NO初始浓度和O_2浓度对SNCR反应性能的影响规律。计算结果表明:最佳NSR在1.4左右,最佳温度在1 173 K附近;O_2浓度的变化对选择性非催化还原反应的影响和温度密切相关,当温度高于1 150 K时,O_2浓度的增加会导致还原剂的氧化反应加剧,使得脱硝效率随O_2浓度的上升而下降,温度越高,氧化反应越剧烈,脱硝效率下降趋势越明显;同时,O_2浓度的上升,有利于最佳脱硝温度向低温方向移动,综合考虑,认为烟气中O_2浓度不应高于3%。  相似文献   

9.
在沉降炉脱硝试验平台上,对不同氨剂的选择性非催化还原(SNCR)脱硝特性进行了试验研究.结果表明:反应适宜氨氮比为1.5,氨气、尿素、碳酸氢铵脱硝的最佳温度窗口分别为985~1 030℃、775~1 085℃、760~1 075℃,尿素和碳酸氢铵最大脱硝效率达90%,优于氨气的80%;增大氨氮比或降低烟气氧浓度均可提高SNCR脱硝效率;在以尿素作为还原剂的SNCR脱硝反应过程中,协同加入钠盐添加剂可在保证最大脱硝效率基本不变的前提下,使反应温度窗口由782.9~1 086.3℃拓宽为749.5~1 086.3℃.  相似文献   

10.
采用微细煤焦再燃还原NO的反应机理   总被引:1,自引:0,他引:1  
刘忠  阎维平  赵莉  宋蔷  姚强 《动力工程》2007,27(6):964-968
以3种细度的混煤煤焦作为再燃燃料,用N2、O2、CO2和NO配制模拟烟气,在1200℃、1300℃和1400℃立管式携带炉中进行了再燃还原NO的实验研究,对其化学反应机理进行了分析.结果表明:微细化煤焦再燃还原NO的反应速率受扩散-反应动力学的联合控制.因此,提高再燃区温度水平、使用反应活性高的煤焦或提高再燃煤焦的细度,均能明显提高再燃还原NO的化学反应速率.  相似文献   

11.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

12.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

13.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

14.
The thermal decomposition of limestone has been selected as a model reaction for developing and testing an atmospheric open solar reactor. The reactor consists of a cyclone gas/particle separator which has been modified to let the concentrated solar energy enter through a windowless aperture. The reacting particles are directly exposed to the solar irradiation. Experimentation with a 60 kW reactor prototype was conducted at PSI's 90m2 parabolic solar concentrator, in a continuous mode of operation. A counter-current flow heat exchanger was employed to preheat the reactants. Eighty five percent degree of calcination was obtained for cement raw material and 15% of the solar input was converted into chemical energy (enthalpy).The technical feasibility of the solar thermal decomposition of limestone was experimentally demonstrated. The use of solar energy as a source for high-temperature process heat offers the potential of reducing significantly the CO2 emissions from lime producing plants. Such a solar thermochemical process can find application in sunny rural areas for avoiding deforestation.  相似文献   

15.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

16.
液压系统常见的故障诊断及处理   总被引:2,自引:0,他引:2  
任何工程机械式液压设备使用时出现故障是不可避免的。但是怎样确定故障的原因及找到好的解决方法,这是使用者最关心的问题。讲述了液压系统常见的故障及其排除方法。  相似文献   

17.
Increasing awareness of environmental problems caused by the current use of fossil fuel-based energy, has led to the search for alternatives. Hydrogen is a good alternative and the cyanobacterium Anabaena sp. PCC 7120 is naturally able to produce molecular hydrogen, photosynthetically from water and light. However, this H2 is rapidly consumed by the uptake hydrogenase.This study evaluated the hydrogen production of Anabaena sp. PCC 7120 wild-type and mutants: hupL (deficient in the uptake hydrogenase), hoxH (deficient in the bidirectional hydrogenase) and hupL/hoxH (deficient in both hydrogenases) on several experimental conditions, such as gas atmosphere (argon and propane with or without N2 and/or CO2 addition), light intensity (54 and 152 ??Em−2s−1), light regime (continuous and light/dark cycles 16 h/8 h) and nickel concentrations in the culture medium.In every assay, the hupL and hupL/hoxH mutants stood out over wild-type cells and the hoxH mutant. Nevertheless, the hupL mutant showed the best hydrogen production except in an argon atmosphere under 16 h light/8 h dark cycles at 54 ??Em−2s−1 in the light period, with 1 ??M of NiCl2 supplementation in the culture medium, and under a propane atmosphere.In all strains, higher light intensity leads to higher hydrogen production and if there is a daily 1% of CO2 addition in the gas atmosphere, hydrogen production could increase 5.8 times, related to the great increase in heterocysts differentiation (5 times more, approximately), whereas nickel supplementation in the culture medium was not shown to increase hydrogen production. The daily incorporation of 1% of CO2 plus 1% of N2 did not affect positively hydrogen production rate.  相似文献   

18.
Trigeneration is defined as the production of three useful forms of energy—heat, cold and power—from a primary source of energy such as natural gas or oil. For instance, trigeneration systems typically produce electrical power via a reciprocating engine or gas turbine and recover a large percentage of the heat energy retained in the lubricating oil, exhaust gas and coolant water systems to maximize the utilization of the primary fuel. The heat produced can be totally or partially used to fuel absorption refrigerators. Therefore, trigeneration systems enjoy an inherently high efficiency and have the potential to significantly reduce the energy-related operation costs of facilities. In this paper, we describe a model of characterization of trigeneration systems trough the condition of primary energy saving and the quality index, compared to the separate production of heat, cold and power. The study highlights the importance of the choice of the separate production reference system on the level of primary energy saving and emissions reduction.  相似文献   

19.
La–Fe–B hydrogen-storage alloys were prepared using a vacuum induction-quenching furnace with a rotating copper wheel. The thermodynamic and kinetic properties of the La–Fe–B hydrogen-storage alloys were investigated in this work. The P–C–I curves of the La–Fe–B alloys were measured over a H2 pressure range of 10−3 MPa to 2.0 MPa at temperatures of 313, 328, 343 and 353 K. The P–C–I curves revealed that the maximum hydrogen-storage capacity of the alloys exceeded 1.23 wt% at a pressure of approximately 1.0 MPa and temperature of 313 K. The standard enthalpy of formation ΔH and standard entropy of formation ΔS for the alloys' hydrides, obtained according to the van't Hoff equation, were consistent with their application as anode materials in alkaline media. The alloys also exhibited good absorption/desorption kinetics at room temperature.  相似文献   

20.
The mineralogical composition of intraseam layers from Lofoi lignite deposits (northwest Greece) is the subject of the present study. The samples were examined by means of X-ray diffraction (XRD), thermo-gravimetric (TG/DTG) and differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectrometry. The clay minerals prevail in most samples, with illite-muscovite being the dominant phase, and kaolinite and chlorite being the other major clay components. No smectite was found. Quartz and feldspars, dominate in two cases. The studied materials are characterized as clays to clayey sands, showing significant similarities with the intraseam layers of the adjacent Achlada lignite deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号