首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Trigeneration or combined heat, cooling and power (CHCP) is becoming an increasingly important energy option, particularly on a small-scale basis (below 1 MWe), with several alternatives nowadays available for the cooling power production and the coupling to cogeneration systems. This paper deals with the introduction of a suitable framework for assessing the energy saving performance of trigeneration alternatives, orientated towards energy planning studies and the development of regulatory policies. In particular, a new generalized performance indicator—the trigeneration primary energy saving (TPES)—is introduced and discussed, with the aim of effectively evaluating the primary energy savings from different CHCP alternatives. The potential of the TPES indicator is illustrated through specific analyses run over different combinations of trigeneration equipment, providing numerical examples based on time-domain simulations to illustrate the dependence of the energy saving characteristics on the CHCP system configurations and equipment, as well as on the loading levels. In addition, the key aspect of adequately establishing the reference efficiencies for the conventional separate production of electrical, thermal and cooling power is addressed in detail. This aspect affects both equipment selection and potential profitability of the considered solutions under the outlook of receiving financial incentives.  相似文献   

2.
The objective of this paper is to experimentally determine the efficiency and viability of the performance of an advanced trigeneration system that consists of a micro gas turbine in which the exhaust gases heat hot thermal oil to produce cooling with an air cooled absorption chiller and hot water for heating and DHW. The micro gas turbine with a net power of 28 kW produces around 60 kW of heat to drive an ammonia/water air-cooled absorption chiller with a rated capacity of 17 kW. The trigeneration system was tested in different operating conditions by varying the output power of the micro gas turbine, the ambient temperature for the absorption unit, the chilled water outlet temperature and the thermal oil inlet temperature. The modelling performance of the trigeneration system and the electrical modelling of the micro gas turbine are presented and compared with experimental results. Finally, the primary energy saving and the economic analysis show the advantages and drawbacks of this trigeneration configuration.  相似文献   

3.
The diffusion of cogeneration and trigeneration plants as local generation sources could bring significant energy saving and emission reduction of various types of pollutants with respect to the separate production of electricity, heat and cooling power. The advantages in terms of primary energy saving are well established. However, the potential of combined heat and power (CHP) and combined cooling heat and power (CCHP) systems for reducing the emission of hazardous greenhouse gases (GHG) needs to be further investigated. This paper presents and discusses a novel approach, based upon an original indicator called trigeneration CO2emission reduction (TCO2ER), to assess the emission reduction of CO2 and other GHGs from CHP and CCHP systems with respect to the separate production. The indicator is defined in function of the performance characteristics of the CHP and CCHP systems, represented with black-box models, and of the GHG emission characteristics from conventional sources. The effectiveness of the proposed approach is shown in the companion paper (Part II: Analysis techniques and application cases) with application to various cogeneration and trigeneration solutions.  相似文献   

4.
Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence, and to increase the use of renewable energies. In the last several years, new technologies have been developed and some of them received subsidies to increase installation and reduce cost. This article presents a new sustainable trigeneration system (power, heat and cool) based on a solid oxide fuel cell (SOFC) system integrated with an absorption chiller for special applications such as hotels, resorts, hospitals, etc. with a focus on plant design and performance. The proposal system is based on the idea of gasifying the municipal waste, producing syngas serving as fuel for the trigeneration system. Such advanced system when improved is thus self-sustainable without dependency on net grid, district heating and district cooling. Other advantage of such waste to energy system is waste management, less disposal to sanitary landfills, saving large municipal fields for other human activity and considerable less environmental impact. Although plant electrical efficiency of such system is not significant but fuel utilization factor along with free fuel, significant less pollutant emissions and self-sustainability are importance points of the proposed system. It is shown that the energy efficiency of such small tri-generation system is more than 83% with net power of 170 kW and district energy of about 250 kW.  相似文献   

5.
In many industrial processes there is a simultaneous need for electric power and refrigeration at low temperatures. Examples are in the food and chemical industries. Nowadays the increase in fuel prices and the ecological implications are giving an impulse to energy technologies that better exploit the primary energy source and integrated production of utilities should be considered when designing a new production plant. The number of so-called trigeneration systems installations (electric generator and absorption refrigeration plant) is increasing. If low temperature refrigeration is needed (from 0 to −40 °C), ammonia–water absorption refrigeration plants can be coupled to internal combustion engines or turbogenerators. A thermodynamic system study of trigeneration configurations using a commercial software integrated with specifically designed modules is presented. The study analyzes and compares heat recovery from the primary mover at different temperature levels. In the last section a simplified economic assessment that takes into account disparate prices in European countries compares conventional electric energy supply from the grid and optimized trigeneration plants in one test case (10 MW electric power, 7000 h/year).  相似文献   

6.
Residential energy cost is an important part of the household budget and could vary significantly across different population groups in many countries. In the United States, many studies have analyzed household fuel consumption by fuel type, including electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG), and by geographic areas. Past research has also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, our research shows that residential energy demand by fuel type for Latinos, the fastest growing population group, has not been explained by economic and non-economic factors in any statistical model in public domain. The purpose of this paper was to discuss energy demand and expenditure patterns for Latino and non-Latino households in hhe United States as a case example of analyzing residential energy consumption across different population groups in a country. The linear expenditure system model developed by Stone and Geary is the basis of the statistical model developed to explain fuel consumption and expenditures for Latino households. For comparison, the models are also developed for non-Latino, black, and non-black households. These models estimate energy consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. Significant variations in the patterns of these fuels consumption for Latinos and non-Latinos are highlighted. The model methodology and results of this research should be useful to energy policymakers in government and industry, researches, and academicians who are concerned with economic and energy issues related to various population groups in their country.  相似文献   

7.
The principal objective of this study is to formulate a calculation process, based on the second law of exergy, for evaluating the thermoeconomic potential of a steam-turbine plant for trigeneration. The plant employs biomass, namely, waste wood as its energy source. Four different plant configurations are presented and assessed. ‘Their cost effectiveness is evaluated with varying economic and operating parameters’, because only the fuel price and electricity price are varied. In case 1, high pressure superheated steam generated is supplied to meet the demand for process heat as well as chilled water production in an absorption chiller. In cases 2 and 3, steam is extracted at appropriate stages of the turbine and supplied to meet the demand for process heat and chilled water production in an absorption chiller. Steam generated in case 2 produces sufficient power to meet internal demands while case 3 generates excess electricity for sale back to the utility. In case 4, low pressure saturated steam is generated to meet the demand for process heat and electricity is bought from the utilities, including those used to power an electric vapour-compression chiller. For all cases, it was found that exergy destruction is most extensive in the furnace, amounting to nearly 60%. Exergy destruction in the steam drum is the next most extensive ranging from 11% to 16%. It was also observed that the overall production cost decreases with steam pressure and increases with steam temperature.  相似文献   

8.
Air conditioning machines in Kuwait consume more than 75% of electric energy generated at peak load time. It is in the national interest of Kuwait to decelerate the continuous increase of peak electric power demand. One way to do this is to install for new complexes or high-rise apartments buildings distributed utilities (isolated small power plants), mainly for air conditioning A/C systems. Fuel cells are among the alternatives considered for distributed utilities.This paper discusses the use of commercially available phosphoric acid fuel cell PAFC, known as ONSI P25 to operate air conditioning systems for big buildings in Kuwait.The proposed fuel cell, which is usually delivered with built-in heat exchanger for hot water, is operated by natural gas and uses a propylene glycol-water loop to recover thermal energy. The PAFC has 200 kW nominal electric power capacity, and produces thermal energy of 105 kW thermal energy at 120 °C, and 100 kW at 60 °C.The performance characteristics for the proposed fuel cell are very well documented. In the present study, it is suggested that the fuel cell operates combined mechanical vapor compression and absorption water chillers to utilize the fuel cell full output of electric power and waste heat. Also, to meet the required A/C cooling capacity system by the limited fuel cell power output, it is proposed to use cold storage technique. This allows fuel cell power output to supply the needed energy for average as well as peak A/C system capacity.  相似文献   

9.
We present here some elements in order to improve the non-destructive procedures for the measurement of the local heat transfer coefficient between a plate uniformly heated and an air-flow. We use the pulsed photothermal method which consists of analysing the transient temperature on the front face of a wall, initially subjected to a convective flow, after a sudden deposit of luminous energy. For the examination of the experimental thermograms, two models are used: in the first one the heat coefficient is assumed to remain constant during the pulsed experiment, and we take into account its variation in time in the second one. The temporal variation law of the heat transfer coefficient used in the second model is obtained by extension of the differential method to the unsteady laminar boundary-layer due to a finite duration excitation. We compare the results of the two models in transient state with those given in steady state by multi-layered heat flux sensor.  相似文献   

10.
Although a solid oxide fuel cell combined with a gas turbine (SOFC-GT) has good performance, the temperature of exhaust from gas turbine is still relatively high. In order to recover the waste heat of exhaust from the SOFC-GT to enhance energy conversion efficiency as well as to reduce the emissions of greenhouse gases and pollutants, in this study a new combined cooling, heat and power (CCHP) system driven by the SOFC is proposed to perform the trigeneration by using ammonia-water mixture to recover the waste heat of exhaust from the SOFC-GT. The CCHP system, whose main fuel is methane, can generate electricity, cooling effect and heat effect simultaneously. The overall system performance has been evaluated by mathematical models and thermodynamic laws. A parametric analysis is also conducted to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that the overall energy conversion efficiency exceeds 80% under the given conditions, and it is also found that the increasing the fuel flow rate can improve overall energy conversion efficiency, even though both the SOFC efficiency and electricity efficiency decrease. Moreover, with an increased compressor pressure ratio, the SOFC efficiency, electricity efficiency and overall energy conversion efficiency all increase. Ammonia concentration and pressure entering ammonia-water turbine can also affect the CCHP system performance.  相似文献   

11.
A micro-combined cooling heating and power (CCHP) system integrated with geothermal-assisted methanol reforming and incorporating a proton exchange membrane fuel cell (PEMFC) stack is presented. The novel CCHP system consists of a geothermal-based methanol steam reforming subsystem, PEMFC, micro gas turbine and lithium bromide (LiBr) absorption chiller. Geothermal energy is used as a heat source to drive methanol steam reforming to produce hydrogen. The unreacted methanol and hydrogen are efficiently utilized via the gas turbine and PEMFC to generate electricity, respectively. For thermodynamic and economic analysis, the effects of the thermodynamic parameters (geothermal temperature and molar ratio of water to methanol) and economic factors (such as methanol price, hydrogen price and service life) on the proposed system performance are investigated. The results indicate that the ExUF (exergy utilization factor the exergy utilization factor), TPES (trigeneration primary energy saving) and energy efficiency of the novel system can be reached at 8.8%, 47.24% and 66.3%, respectively; the levelized cost of energy is 0.0422 $/kWh, and the annual total cost saving ratio can be reached at 20.9%, compared with the conventional system. The novel system achieves thermodynamic and economic potential, and provides an alternative and promising way for efficiently utilizing abundant geothermal energy and methanol resources.  相似文献   

12.
Cogeneration of various energy forms in a single piece of equipment has the potential of saving primary energy in comparison to separate generation. The amount of energy saving depends on the thermodynamic parameters of the systems to be compared and can be presented in a closed formula. For the particular case of cogeneration in a steam turbine a thorough thermodynamic analysis on the basis of exergy losses reveals the reasons for the higher efficiency. It is due to the facts that on producing the useful heat a transfer of this heat over the temperature difference between the heat intake of the cycle and the temperature of the heat demand is replaced by a power cycle and that separate power production is avoided altogether. This leads to a rational allocation of primary energy and in turn of emissions to the coupled energy forms.  相似文献   

13.
Application of landfill gas (LFG) means a synergy between environmental protection and energy production. This paper presents a review of the status of LFG application. To more efficiently utilize the LFG in Hong Kong, a trigeneration scheme is proposed as a new way of LFG utilization. The feasibility of LFG trigeneration in Hong Kong is evaluated from the views of primary energy-saving and greenhouse gas (GHG) emission reduction as well as economic benefit. The proposed scenario is compared with the conventional scenarios of LFG treatment and utilization. It is shown that LFG for trigeneration has a higher energy saving and GHG emission reduction potentials. The new scheme is also more economical than the conventional way of LFG utilization. Some policy recommendations are also given to promote the biomass energy utilization from waste landfills in Hong Kong.  相似文献   

14.
Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air–steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.  相似文献   

15.
There are large numbers of manufacturing processes that involve emissions of controlled chemical vapours also referred to as volatile organic compounds (VOC). The two most common processes used in industry to separate VOCs before they are emitted to the atmosphere are condensation and oxidation. Condensation requires a refrigeration system that would separate the VOC from the exhaust stream. Oxidation, sometimes known as afterburner or incineration, requires high thermal energy to combust the VOC. Both abatement technologies involve large capital costs. In the case of combusting the VOC, fuel is usually added to the air/VOC mixture for proper air/fuel ratio. The resulting high temperature gas from the energy intensive process is sometimes recovered as an offshoot of the VOC destruction process. Typically, oxidation systems are sized solely with elimination of VOC in mind; heat recovery from the system is opted for as a secondary opportunity, usually at a later stage. This paper demonstrates that combining the oxidation process with combined heat and power (CHP) to address the total site energy requirement could have significant energy saving and economic benefits to sizing the oxidation for VOC destruction marking heat recovery as a spin‐off. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Shipping contributes 4.5% to global CO2 emissions and is not covered by the Kyoto Agreement. One method of reducing CO2 emissions on land is combined cooling heating and power (CCHP) or trigeneration, with typical combined thermal efficiencies of over 80%. Large luxury yachts are seen as an ideal entry point to the off-shore market for this developing technology considering its current high cost.This paper investigates the feasibility of combining a SOFC-GT system and an absorption heat pump (AHP) in a trigeneration system to drive the heating ventilation and air conditioning (HVAC) and electrical base-load systems. A thermodynamic model is used to simulate the system, with various configurations and cooling loads. Measurement of actual yacht performance data forms the basis of this system simulation.It is found that for the optimum configuration using a double effect absorption chiller in Ship 1, the net electric power increases by 47% relative to the electrical power available for a conventional SOFC-GT-HVAC system. This is due to more air cooled to a lower temperature by absorption cooling; hence less electrical cooling by the conventional HVAC unit is required. The overall efficiency is 12.1% for the conventional system, 34.9% for the system with BROAD single effect absorption chiller, 43.2% for the system with double effect absorption chiller. This shows that the overall efficiency of a trigeneration system is far higher when waste heat recovery happens.The desiccant wheel hardly reduces moisture from the outdoor air due to a relative low mass flow rate of fuel cell exhaust available to dehumidify a very large mass flow rate of HVAC air, Hence, desiccant wheel is not recommended for this application.  相似文献   

17.
The paper analyses the economic value of using electric heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Both measures have different technical and economic characteristics, making a comparison of the value of these measures relevant. A stochastic, fundamental bottom‐up model, taking the stochastic nature of wind power production explicitly into account when making dispatch decisions, is used to analyse the technical and economical performance of these measures in a North European power system covering Denmark, Finland, Germany, Norway and Sweden. Introduction of heat pumps or electric boilers is beneficial for the integration of wind power, because the curtailment of wind power production is reduced, the price of regulating power is reduced and the number of hours with very low power prices is reduced, making the wind power production more valuable. The system benefits of heat pumps and electric boilers are connected to replacing heat production on fuel oil heat boilers and combined heat and power (CHP) plants using various fuels with heat production using electricity and thereby saving fuel. The benefits of the measures depend highly on the underlying structure of heat production. The integration measures are economical, especially in systems where the marginal heat production costs before the introduction of the heat measures are high, e.g. heat production on heat boilers using fuel oil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the emission reduction in synthesis-gas production by better integration and increasing the energy efficiency of a high-temperature co-electrolysis unit combined with the Fischer-Tropsch process. The investigated process utilises the by-product of Fischer-Tropsch, as an energy source and carbon dioxide as a feedstock for synthesis gas production. The proposed approach is based on adjusting process streams temperatures with the further synthesis of a new heat exchangers network and optimisation of the utility system. The potential of secondary energy resources was determined using plus/minus principles and simulation of a high-temperature co-electrolysis unit. The proposed technique maximises the economic and environmental benefits of inter-unit integration. Two scenarios were considered for sharing the high-temperature co-electrolysis and the Fischer-Tropsch process. In the first scenario, by-products from the Fischer-Tropsch process were used as fuel for a high-temperature co-electrolysis. Optimisation of secondary energy sources and the synthesis of a new heat exchanger network reduce fuel consumption by 47% and electricity by 11%. An additional environmental benefit is reflected in emission reduction by 25,145 tCO2/y. The second scenario uses fossil fuel as a primary energy source. The new exchanger network for the high-temperature co-electrolysis was built for different energy sources. The use of natural gas resulted in total annual costs of the heat exchanger network to 1,388,034 USD/y, which is 1%, 14%, 116% less than for coal, fuel oil and LPG, respectively. The use of natural gas as a fuel has the lowest carbon footprint of 7288 tCO2/y. On the other hand, coal as an energy source has commensurable economic indicators that produce 2 times more CO2, which can be used as a feedstock for a high-temperature co-electrolysis. This work shows how in-depth preliminary analysis can optimise the use of primary and secondary energy resources during inter-plant integration.  相似文献   

19.
This paper presents a comparative energy system analysis of different technologies utilising organic waste for heat and power production as well as fuel for transport. Technologies included in the analysis are second-generation biofuel production, gasification, fermentation (biogas production) and improved incineration. It is argued that energy technologies should be assessed together with the energy systems of which they form part and influence. The energy system analysis is performed by use of the EnergyPLAN model, which simulates the Danish energy system hour by hour. The analysis shows that most fossil fuel is saved by gasifying the organic waste and using the syngas for combined heat and power production. On the other hand, least greenhouse gases are emitted if biogas is produced from organic waste and used for combined heat and power production; assuming that the use of organic waste for biogas production facilitates the use of manure for biogas production. The technology which provides the cheapest CO2 reduction is gasification of waste with the subsequent conversion of gas into transport fuel.  相似文献   

20.
Liquefied natural gas (LNG) vaporization facilities offer an excellent opportunity of primary energy saving by means of integration with power conversion units that is still weakly exploited in actual installations. This work focuses on the evaluation of primary energy saving achievable by the integration of an LNG vaporization facility with a gas turbine and with a cogenerative combined gas‐steam power plant. The fuel energy saving ratio is used as the main performance parameter to evaluate the primary energy saving derived by system integration, with respect to conventional submerged combustion vaporization. Twelve possible configurations are analyzed with steady‐state calculations. Results show that a primary energy saving greater than 15% with peak values up to 27%, corresponding to 2.98 TJ/year, is achievable. The paper shows that the fuel energy saving ratio can be used as a synthetic and effective parameter to estimate the energy‐saving potential of different plant configurations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号