首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究预混气体在多孔介质燃烧器中的火焰燃烧特性,设计了一种新型多孔介质燃烧器,其中多孔介质区域由氧化铝圆柱体有序堆积而成。分别研究了当量比和入口速度对甲烷/空气预混气体在多孔介质燃烧器中的火焰温度分布、火焰最高温度以及火焰传播速度的影响。结果表明:在当量比0.162~0.324、入口速度0.287~0.860 m/s的实验工况下火焰均可以稳定向前传播,并且都发生了超绝热燃烧;当量比越大,入口速度越大,火焰最高温度越高;当入口速度为0.430 m/s时,贫可燃极限的当量比可以扩展到0.162;火焰传播速度随着入口速度的增加和当量比的减小而增大,其数量级为0.100 mm/s,属于一种十分典型的低速过滤燃烧。  相似文献   

2.
新型低热损失微燃烧器原型的实验研究   总被引:6,自引:0,他引:6  
试验研究了一种降低微燃烧器热损失的新方式,其原理是通过多孔壁面均匀进气来预热未燃混合气,同时降低壁面温度,从而有效降低燃烧器热损失.结果表明:采用燃烧器周向供给富燃料混合气,端面中心供给空气的组合进气方式,可以在微燃烧器内形成稳定的管状预混合火焰,火焰呈蓝色,燃烧稳定.当火焰温度达到1 100 ℃以上时,燃烧器内壁的温度低于500 ℃,外壁面温度在150 ℃左右,微燃烧器的侧壁面热损失率约为6%,对于强化微燃烧器的火焰稳定性效果显著.  相似文献   

3.
针对带有催化肋片的微燃烧室内部的氢氧预混合燃烧过程,利用CFD计算软件建立数值模型,在实验验证的基础上进行了模拟计算。结果表明:不同流速下,燃烧室内布置催化肋片能提高燃烧室外壁面平均温度以及燃烧效率。在低流速时催化肋片布置越靠近入口,表面催化反应对气相反应的抑制程度越大;肋片位置越靠近出口,燃烧室外壁面平均温度越高。在高流速下,催化肋片位置越靠近出口,表面催化反应对气相反应的促进作用越明显,使得燃烧室外壁面温度分布越均匀、燃烧室出口截面温度越高。  相似文献   

4.
考察了不同种类低热值燃气预混气在旋流管状火焰燃烧器中的燃烧特性,比较了稀释气种类、燃气热值和组分等对可燃极限、火焰温度分布、燃烧效率及污染物排放的影响.结果表明,惰性气体CO2替代N2使可燃极限变窄、燃烧效率降低,而用H2替代部分CH4则有利于稳燃并改善燃烧效率.对4种实际低热值燃气的燃烧测试结果表明,管状火焰燃烧器可以实现多种低热值燃气稳定、高效、低排放的燃烧.  相似文献   

5.
采用20步反应机理模拟了H2/空气在内径2 mm长20 mm的圆管内的预混燃烧.H2/空气预混火焰由壁面向中心传播,呈圆锥形.随着气流向后流动,燃烧区域截面温度曲线由"U"形变为"M"形,后又变为倒"U"形,分别对应壁面加热预混气体的过程,预混燃烧火焰由近壁面向中心传播的过程和燃烧后气体对外散热过程.微燃烧器对外散热量较大,约占总输入热的10%左右,其中燃烧段散热约占5%.辐射散热在壁面散热中占主导地位,占总散热的80%~90%,外壁低辐射系数的材料有利于减少散热和增加燃烧稳定性.对微燃烧而言,燃烧器壁厚增加使燃烧器散热增加,反而不利于降低燃烧器散热.燃烧器入口处壁温与壁面导热系数、壁厚不呈单调变化趋势.在导热系数为3~20 W/(m·K)、壁厚为1 mm左右时,燃烧器入口处壁温较高,有利于稳定燃烧.  相似文献   

6.
对微平板燃烧器内4种烷类燃料(C1 ~ C4)进行铂催化燃烧实验,获得其点火过程和静态火焰的特征,并进行对比分析。当量比相同时,点火过程火焰传播速度大小顺序为甲烷 > 乙烷 > 丁烷 > 丙烷。随着当量比增大,火焰传播速度加快,稳态火焰根部位置向气流上游移动。观察可见光、430 nm(OH*光谱)、516 nm(C2*光谱)成像火焰发现,当量比越大,火焰亮度越大,OH*和C2*浓度越高。当量比相同时,乙烷的OH*、CH*和C2*浓度最高,而甲烷和丙烷的则较低。  相似文献   

7.
采用有限差分法和焓降法相结合的方法数值模拟三维方管保温温度场,研究提高保温计算精度的途径和方法。研究结果表明:管内空气出口温度测试结果与考虑保温层热导率随温度变化及管内壁传热热阻时的数值模拟结果误差〈2.1%;保温材料热导率随温度变化和管内壁传热热阻对短管管内介质出口温度的影响可以忽略;管长〉2.35km时管内介质出口温度计算要考虑保温层热导率随温度变化;忽略保温层热导率随温度变化的管外壁散热损失误差〉11%,表明管外壁散热损失和长管管内介质出口温度计算必须考虑保温层热导率随温度变化,但可忽略管内壁综合表面传热热阻。  相似文献   

8.
为了探究当量比对锥形燃烧器头部火焰稳定位置及排放特性的影响,采用数值模拟方法对锥形燃烧 器的流动与燃烧特性进行研究。分析讨论了当量比从0. 54增加至0. 78时燃烧器头部的火焰锋面位置与高 温区温度的变化规律,以及不同当量比下火焰指数、NOx与C0排放量的变化趋势。研究结果表明,速度分布 与回流区特征随当量比升高未见明显变化。随着当量比升高,高温区的最高温度逐渐升高,火焰稳定位置向 燃烧器内部移动。当量比增加至0.66时开始发生回火,继续增加当量比时高温区贴近锥形燃烧器头部壁面 与喷嘴,有烧毁燃烧器的危险。NOx排放量随当量比增大而增大,当量比从0. 54增加至0. 66时,NOx排放量 缓慢增加,当量比继续增加至0.78过程中,NOx排放量迅速增加,NOx排放增加了 32.4倍。C0排放量随当 量比的增大先减小后增大,并在当量比为0.66时达到最小值  相似文献   

9.
周劲  张力  闫云飞  蒲舸 《热能动力工程》2012,27(3):312-317,392
为提高低热值煤层气的燃烧效率,设计了3种由不同开槽深度的旋流片组合成的低热值煤层气燃烧器,并进行燃烧特性实验研究,分析了不同流量下,开槽深度对燃烧室内速度、温度及火焰结构特性的影响。研究表明,火焰温度在燃烧器轴线方向分布与流速分布相似,均存在一个温度和速度峰值。相同轴向距离处,甲烷流量减小,3种旋流片的火焰中心流速和温度峰值逐渐下降,且中心流速峰值、温度峰值位置逐渐前移,但温度峰值位置始终是大于速度峰值位置。开槽深度对燃烧特性的影响主要是由于燃气通流截面改变引起的入口流速和射流直径变化导致的。采用3 mm开槽深度的旋流片时,火焰长度和直径增加最快,燃烧室内轴向速度分布和温度场最为理想,射流刚性和火焰充满度最好。  相似文献   

10.
利用自行设计的多孔介质实验台,对C_2H_4-AIR-N_2预混气体在多孔介质燃烧器内的燃烧特性进行了实验研究,分析燃料当量比、预混气体流速以及N_2稀释比对预混气体的可燃极限、火焰传播方向、火焰温度分布以及污染物排放的影响。研究表明:随着稀释比的上升,预混气体的可燃极限范围缩小,火焰向上游传播的工况逐渐减少;燃烧器内最高火焰温度与当量比以及气体流速正相关,与稀释比负相关;CO的排放量随着稀释比的上升而增加,与当量比以及气体流速负相关;实验中的NO排放量小于20 mg/m~3。  相似文献   

11.
曹海亮  张凯  张硕果  赵纪娜 《热能动力工程》2012,27(2):207-211,265,266
设计了多孔介质回热徽燃烧器,对微燃烧器内H2/Ak的预混燃烧特性进行了实验研究和数值模拟,实验结果表明,当过量空气系数1.0<α<3.0时,微燃烧器具有较高的燃烧效率,出口烟气温度和较低的燃烧热损失率,且燃烧热功率P越高,α越大,热损失率越小.当P=100 W时,其出口烟气温度最高可达到1 232 K,当α=3.0时,燃烧效率仍达到96.85%,而热损失率仅为14.87%.数值模拟结果表明,由于采用了回热夹层和多孔介质回热结构,有效地回收了热量损失,使得微燃烧器具有良好的热性能.证明设计的多孔介质回热微燃烧器是一种燃烧效率高、热损失率低的微燃烧器.  相似文献   

12.
多孔介质中预混火焰猝熄及自稳定性研究   总被引:3,自引:0,他引:3  
分析了多孔介质中预混火焰的猝熄效应,试验测定了一系列工况下泡沫陶瓷的猝熄直径和自稳定范围,为多孔介质燃烧器的开发设计提供了依据。通过分析发现,猝熄直径受到多个参数的影响,包括:混合气体的流速u、预混气体的层流火焰传播速度SL、燃烧室空管Re、预混气体的导温系数a、当量比φ以及多孔介质固体温度Ts。通过对多孔介质中燃烧的自稳定性试验研究,发现了多孔介质燃烧器中火焰稳定极限(吹脱极限和回火极限)与多孔介质平均孔径和气流速度及燃烧当量比的关系。  相似文献   

13.
通过求解三维定常雷诺平均的N-S方程,对NexGen燃烧器的出口流场进行数值模拟。首先,利用冷态流场的实验数据验证燃烧器几何模型和数值计算方法的有效性。然后,在计算中分别选取火焰面模型、混合分数PDF模型和涡耗散模型3种燃烧模型,比较燃烧模型对燃烧器出口流场模拟结果的影响。研究结果表明:燃烧模型对Nex Gen燃烧器出口的速度场、火焰形状和热流密度分布基本没有影响,但是对火焰长度、火焰最高温度、最高热流密度及校准面上温度分布和温度值有较大影响。相比火焰面模型和涡耗散模型,混合分数PDF模型的计算结果与实验结果吻合较好,可以为防火试验方案设计提供参考。  相似文献   

14.
研究了火焰在有壁面散热的微细圆管中的传播过程.流动马赫数很小时,假定流体满足理想气体状态方程,采用详细化学反应机理.火焰面形状由壁面散热和流场共同决定.壁面散热增大时会导致熄火.引入二维流场使维持火焰稳定传播的壁面散热范围扩大.计算结果表明,微细圆管燃烧器内较大的火焰面曲率能促进燃烧.  相似文献   

15.
在亚毫米尺度,尺寸效应带来散热损失的激增和燃烧驻留时间的急剧减少,使燃烧室内预混合气的着火和燃烧条件恶化.针对碳化硅材质的亚毫米矩形燃烧室,改变混合气的流量和当量比,测出了不同高度燃烧室内氢氧预混合气的着火界限分布,并通过燃烧室外壁面和出口温度的测量,分析得出亚毫米通道内氢氧预混合燃烧的特性.结果表明,亚毫米尺寸与常规尺寸相比氢氧预混合气的稀燃界限明显升高,但仍能在一定条件下实现稳定燃烧;测试条件下,外壁面温度随氢气流量的增加而升高,但燃烧的充分性降低;少量的过量氧气能提高外壁面的温度,并使温度分布更均匀;由于导热系数较高,碳化硅材质的燃烧室外壁面温度分布比石英材质的要更均匀.  相似文献   

16.
多孔介质回热微燃烧器的扩散燃烧   总被引:1,自引:0,他引:1  
设计了多孔介质回热微燃烧器.进行了微燃烧器的扩散燃烧特性实验研究,得到了其燃烧效率、出口尾气温度、壁面温度和热损失率随燃烧热功率和过量空气系数的变化规律.实验发现,在较宽的操作范围内,微燃烧器具有较高的燃烧效率和出口尾气温度,而且随着燃烧功率和过量空气系数的增大,微燃烧器的壁面温度和热损失率反而减小.分析表明,采用回热夹层和多孔介质相向的进气方式,使得反应气体的流动方向与散热方向相反,有效回收了热量损失,提高了微燃烧器的热效率和出口尾气温度.所设计的多孔介质回热微燃烧器对开发微燃烧透平发电系统具有重要应用价值.  相似文献   

17.
蔡松  张力  蒲舸  周劲 《热能动力工程》2012,27(2):202-206,265
对一种低热值煤层气燃烧器进行优化设计,在燃气管内设置导流叶片,并在旋流空气管和燃气管之间增加一根直流空气管,对此燃烧器进行冷态和热态实验,结果表明:改进后的燃烧器旋流强度沿中心轴线比原燃烧器下降平缓,在中心轴线相同位置处大于原燃烧器,改进后的燃烧嚣旋流强度最大值为0.53;改进后的燃烧器燃烧温度沿中心轴线比原燃烧器上升快,在中心轴线0.55 m处,温度达到最大值1 440 K;在相同热负荷下,温度峰值比原燃烧器更靠近喷口,且比原燃烧器大.原燃烧器火焰尾部温度高,火焰长,局部容积热强度低.  相似文献   

18.
多孔介质内往复流动下超绝热燃烧的实验研究   总被引:4,自引:0,他引:4  
对RSCP的燃烧特性进行了实验研究.建成了RSCP实验台,它由泡沫陶瓷燃烧器、电磁阀控制的周期换向进排气管路系统和测量系统组成.对各种工况参数(燃料空气当量比、气体流速、循环半周期)下多孔介质内轴向温度分布进行了系统的测量.实验结果表明,较之常规的自由火焰燃烧器,RSCP具有增强火焰稳定性、拓宽燃料可燃极限等优点.对丙烷-丁烷混合气,其贫可燃极限可扩展到当量比0.065.在实验基础上,探讨了RSCP实现超绝热燃烧的机理,总结出有关工况参数对其燃烧特性影响的规律.  相似文献   

19.
平面火焰微燃烧器及其温差热电转换系统   总被引:1,自引:0,他引:1  
提出了一种厘米级别的平面火焰微燃烧器及其温差热电转换系统原理,即燃料氧化剂混合气相向穿过两块平行布置烧结多孔平板并在其表面形成稳定的火焰,实现燃烧器壁面温度远低于火焰温度的目的;进行燃烧器和微发电系统原型性能实验.在燃烧器烟气通道外壁面布置高导热系数薄匀热片能够有效改善热电模块热端温度场均匀性,从而提高系统安全性和输出性能.在燃烧燃料当量比(甲烷/空气)φ=0.6时,火焰温度高于800℃,壁面温度低于200℃,水冷条件下,商用碲化铋(Bi2Te3)热电模块热端150℃,系统可以获得8 V开路电压和1 W以上稳定输出功率,系统综合效率达1.6%.  相似文献   

20.
采用湍流火焰封闭燃烧模型(TFC)模拟了钝体燃烧器的湍流预混燃烧,比较了基于火焰褶皱率和湍流燃烧速度2种源项解法对钝体预混燃烧的预测,对3个不同湍流燃烧速度表达式模拟的性能进行了比较,采用粒子成像测速技术(PIV)测量了燃烧器中心射流出口的速度分布,并将其作为边界条件代入计算.结果表明:不同湍流燃烧速度公式的计算结果在火焰刷厚度、位置及火焰前锋位置方面存在较大差别;Gulder公式的计算结果最接近试验数据,火焰刷厚度与试验结果吻合较好,但火焰刷位置与试验结果差别较大;Dinkelacker的火焰褶皱率模型主要模拟燃烧器在高压条件下的燃烧,在运行压力接近标准大气压的情况下,计算结果与试验值存在较大误差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号